Abstract:
The invention provides control systems and methodologies for controlling a process having computer-controlled equipment, which provide for optimized process performance according to one or more performance criteria, such as efficiency, component life expectancy, safety, emissions, noise, vibration, operational cost, or the like. More particularly, the subject invention provides for employing machine diagnostic and/or prognostic information in connection with optimizing an overall business operation over a time horizon.
Abstract:
The invention provides control systems and methodologies for controlling a process having one or more motorized pumps and associated motor drives, which provide for optimized process performance according to one or more performance criteria, such as efficiency, component life expectancy, safety, emissions, noise, vibration, operational cost, or the like. More particularly, the subject invention provides for employing machine diagnostic and/or prognostic information in connection with optimizing an overall business operation over a time horizon.
Abstract:
A system and methodology is provided for dynamically adjusting fluids that operate as a lubricant in a machine. The system includes a control module having a processor and one or more sensors providing data to the processor in situ with the machine, wherein the processor employs the data to monitor the fluid. One or more inputs are provided to receive a plurality of additives that are associated with the fluid, wherein actuators are employed by the processor to dispense the additives to the fluid. The processor dispenses the fluid based upon one or more parameters of the fluid.
Abstract:
A system that facilitates device and/or machinery diagnostics, prognostics and control by way of condition sensing, such as sensing the condition of the device and/or a fluid of the device (e.g., fluid health indicators). The system can employ a plurality of sensors to determine a current state and estimate a future state of the fluid and/or device, as well as providing control of the device, e.g., in order to increase the remaining useful life of the fluid and/or operation of the device. The sensors can communicate wirelessly with each other, with the device, and/or with a central control system that provides, e.g., sensor fusion, prognostics and control integration. In addition, the sensors can be powered locally based upon the physical or chemical properties of the environment.
Abstract:
A system and methodology is provided for dynamically adjusting fluids that operate as a lubricant in a machine. The system includes a control module having a processor and one or more sensors providing data to the processor in situ with the machine, wherein the processor employs the data to monitor the fluid. One or more inputs are provided to receive a plurality of additives that are associated with the fluid, wherein actuators are employed by the processor to dispense the additives to the fluid. The processor dispenses the fluid based upon one or more parameters of the fluid.
Abstract:
A system that facilitates measurement, analysis, and automatic maintenance of fluid comprises a fluid, and a casing that includes a plurality of apertures is immersed in the fluid. The apertures are opened to permit the fluid to enter the casing and closed to confine a sample of the fluid within the casing. A sensing element within the casing measures at least one parameter of the sample of fluid confined within the casing.
Abstract:
A microelectromechanical system (MEMS) strain gauge includes at least one flexible arm that can be caused to oscillate. Transverse strain on the arm changes the resonant frequency of the arm. A detector communicating with the flexible arm may detect the frequency of oscillation to provide, an indication of the transverse strain of the substrate.
Abstract:
A system that facilitates in situ determination of lubricity in a fluid comprises a multi-element sensor positioned within a machine, wherein the multi-element sensor obtains data regarding a plurality of parameters of a fluid. A component calculates lubricity of the fluid based at least in part upon the measured parameters.
Abstract:
Microelectromechanical (MEMS) switches are used to implement a flying capacitor circuit transferring of electrical power while preserving electrical isolation for size critical applications where transformers or coupling capacitors would not be practical. In one embodiment, the invention may be used to provide input circuits that present a programmable input impedance. The circuit may be modified to provide for power regulation.
Abstract:
A system for determining at least one condition of a seal including an optical fiber for transmitting light from a light source. The optical fiber is embedded in the seal and operatively coupled to an interferometric system. The interferometric system is operatively coupled to a processor. The interferometric system provides the processor with information relating to wear of the optical fiber, and the processor determines wear of the seal, rate of wear and remaining useful life of the seal based on the information relating to wear of the optical fiber.