Abstract:
Network signaling loads are controlled in a wireless network by monitoring traffic patterns at an access point and determining that the access point is a high turnover access point. A high turnover access point is determined based on an average time devices spend in a coverage area of the access point being below a threshold level. Beacon and/or probe response messages are generated that identify the access point as a high turnover access point. In addition, a turnover activity value may be generated for the access point and included in the beacon and/or response messages. A mobile device may determine whether to authenticate and associate with the access point based on the turnover activity value.
Abstract:
A system and methods are provided to enable differentiated association of stations (STAs) in a WiFi system and provide differentiated quality of service (QoS) based association. The embodiments include categorizing STAs that share a channel of the WiFi network into different association priority classes, wherein the STAs with higher association priority classes wait for shorter times before starting association with an access point (AP) over the shared channel. The association priority classes are assigned by the AP or the WiFi network and signaled to the STAs. Alternatively, the association priority classes are assigned by the STAs and indicated to the AP or the WiFi network. The association priority class is determined for a STA according to traffic type, device type, subscriber type, or a random number generator.
Abstract:
A method embodiment includes receiving, by an access point (AP), a request for an access network query protocol (ANQP) element, and multicasting the ANQP element as an ANQP information element (IE), wherein the ANQP IE is configured in accordance with a format transmittable by the AP in a multicast.
Abstract:
Embodiments are provided for identifying transitory WiFi users and providing a differential treatment of such users in terms of delaying associating steps between user stations (STAs) and an access point (AP). A transitory user refers to a user or user device that connects to a WiFi AP but does not run applications that require association or assigning IP addresses, such as short-term or temporary connected WiFi users that are on the move. In an embodiment, a STA connects to an AP. Upon the STA indicating its transitory behavior to the AP or the AP detecting criteria of transitory behavior of the STA, the STA obtains a delay time value from the AP. The STA then delays sending an association request to the AP, or alternatively, the AP delays handling the association request from the STA in accordance with the delay time value.
Abstract:
The hidden node problem can be avoided by scheduling stations in different sectors to perform transmissions during different time periods. Sectorized scheduling can be communicated to stations through transmission of beamformed beacon signals at the beginning of respective time periods. For instance, a first beamformed beacon signal may be transmitted to stations in a first sector at the beginning of a first time period, while a second beamformed beacon signal may be transmitted to stations in a second sector at the beginning of a second time period.
Abstract:
A method for measuring delay in a wireless fidelity (WiFi) network includes measuring a delay associated with transmission of a packet through the WiFi network in response to a measurement request from a requesting device, and contending for access to a communications channel of the WiFi network after measurement of the delay. The method also includes transmitting the delay as measured to the access point using the communications channel after a successful contention.
Abstract:
A method for transmitting a transmission to a station in a wireless network includes transmitting a preamble of the transmission to the station using a first channel with a first bandwidth, the preamble including a first indicator indicating a second channel with a second bandwidth, the second bandwidth greater than the first bandwidth, and transmitting a data portion of the transmission to the station using the second channel with the second bandwidth.
Abstract:
A method for operating an access point includes receiving information from a first station configured to operate in a non-transmit-indicator-map (TIM) mode, and determining if downlink data intended for the first station is available at the access point. The method also includes transmitting at least one of the downlink data intended for the first station to the first station, a data indicator indicating that the downlink data intended for the first station is available at the access point, information indicating downlink data is available for the first station, and a time indicator indicating a specific time when the downlink data intended for the first station will be sent to the first station.
Abstract:
A method for operating a first station includes broadcasting identifying information during a contention period after obtaining access to a communications medium used to transmit messages. The method also includes receiving a transmission intended for an access point from a second station over the communications medium, and forwarding the transmission to the access point over the communications medium.