Abstract:
A method and device for automatically identifying the deepest point on the surface of an anomaly on a viewed object using a video inspection device. The video inspection device obtains and displays an image of the surface of the viewed object. A reference surface is determined along with a region of interest that includes a plurality of points on the surface of the anomaly. The video inspection device determines a depth for each of the plurality of points on the surface of the anomaly in the region of interest. The point on the surface of the anomaly having the greatest depth is identified as the deepest point.
Abstract:
A method and device for automatically identifying a point of interest in a depth measurement on a viewed object using a video inspection device is disclosed. The video inspect device determines the three-dimensional coordinates in a region of interest on the viewed object and analyzes those surface points to determine the desired measurement application (e.g., determining the deepest point, the highest point, or the clearance between two surfaces). Based on the desired measurement application, the video inspection device automatically identifies the point of interest on the viewed object and places a cursor at that location.
Abstract:
A method of operating an inspection device includes collecting a plurality of successive image frames using an image sensor of the inspection device and displaying the plurality of successive image frames on a display of the inspection device. The method includes processing, via a processor of the inspection device, each image frame of the plurality of successive image frames by determining a motion parameter of each respective image frame and adding each respective image frame to a frame buffer when the respective image frame is motion free. The method includes receiving a control signal from a user interface of the inspection device requesting an image frame output. The method further includes determining, via the processor of the inspection device, a noise-reduced image frame from the frame buffer in response to the control signal and outputting the noise-reduced image frame in response to the control signal.
Abstract:
A method of operating an inspection device includes collecting a plurality of successive image frames using an image sensor of the inspection device and displaying the plurality of successive image frames on a display of the inspection device. The method includes processing, via a processor of the inspection device, each image frame of the plurality of successive image frames by determining a motion parameter of each respective image frame and adding each respective image frame to a frame buffer when the respective image frame is motion free. The method includes receiving a control signal from a user interface of the inspection device requesting an image frame output. The method further includes determining, via the processor of the inspection device, a noise-reduced image frame from the frame buffer in response to the control signal and outputting the noise-reduced image frame in response to the control signal.
Abstract:
A method and system for detecting a known measurable object feature using a video inspection system. The method and system displays an image of a viewed object and detects a known measurable object feature on the viewed object. The method and system then displays a set of available measurement types including a measurement type associated with the detected known measurable object feature and/or automatically positions a plurality of measurement markers on the displayed image based on the measurement type associated with the detected known measurable object feature.
Abstract:
A method and device for automatically identifying a point of interest (e.g., the deepest or highest point) on a viewed object using a video inspection device. The method involves placing a first cursor on an image of the object to establish a first slice plane and first surface contour line, as well as placing another cursor, offset from the first cursor, used to establish an offset (second) slice plane and an offset (second) surface contour line. Profile slice planes and profile surface contour lines are then determined between corresponding points on the first surface contour line and the offset (second) surface contour line to automatically identify the point of interest.
Abstract:
The present disclosure describes an embodiment that provides a tangible, non-transitory, computer-readable medium storing instructions executable by a processor of an endoscope. The instructions include instructions to capture, using an imager in the endoscope, a first plurality of images at a first brightness level while a live video based at least in part on the first plurality of images is displayed, generate, using the processor, a baseline image by averaging or summing the first plurality of images, capture, using the imager, a second plurality of images at a plurality of brightness levels, in which the plurality of brightness levels are different from the first brightness level, and generate, using the processor, a high dynamic range image based at least in part on the baseline image and the second plurality of images, in which the high dynamic range image comprises more unsaturated pixels than the baseline image.
Abstract:
A method and device for automatically identifying the deepest point on the surface of an anomaly on a viewed object using a video inspection device. The video inspection device obtains and displays an image of the surface of the viewed object. A reference surface is determined along with a region of interest that includes a plurality of points on the surface of the anomaly. The video inspection device determines a depth for each of the plurality of points on the surface of the anomaly in the region of interest. The point on the surface of the anomaly having the greatest depth is identified as the deepest point.
Abstract:
An embedded imaging system in one embodiment includes an encoding module, an imaging module, and a cable. The encoding module is disposed proximate to a proximal end of the system, and is configured to encode frame synchronizing information into timing information comprising a reference clock. The imaging module is disposed proximate the distal end, and includes an image capture device configured to obtain imaging information and a decoding module. The decoding control module is configured to obtain the timing information, to decode the timing information to obtain recovered frame synchronizing information, and to control the image capture device using the recovered frame synchronizing information. The cable is interposed between the proximal end and the distal end, and is configured for passage therethrough of the timing information and the imaging information.