Abstract:
A method for developing a virtual representation of an x-ray diffraction imaging system includes generating a symmetry axis, generating a conical shape having a base diameter, a vertex angle α, and a vertex point, locating the vertex point at an origin point on the symmetry axis, and extending a first line and a second line between the vertex point and the conical base such that the first line is separated an angle dφ from the second line in an azimuthal direction around the conical base.
Abstract:
An integrated, multi-sensor, Level 1 screening device is described, which system provides a next-generation Explosives Detection System (EDS) that enables high throughput, while drastically reducing false alarms. In exemplary embodiments, the present system comprises a non-rotational, Computed Tomography (CT) system and a non-translational, X-ray diffraction (XRD) system, both in an inline configuration.
Abstract:
The invention relates to an electron window 1 for a liquid-metal anode 2 in the form of a membrane 4. It is provided according to the invention that the electron window 1 has ridges 10 and depressions 11. In addition, the invention relates to a liquid-metal anode 2 into which such an electron window 1 according to the invention is inserted. The invention further relates to an X-radiator which has a liquid-metal anode 2 according to the invention. The invention also relates to a method for operating a liquid-metal anode 2 in which, during the production of X-radiation, stronger turbulence 5 is produced in the flow of the liquid metal below the electron window 1 at the ridges 10.
Abstract:
An imaging system for generating a diffraction profile is described. The imaging system includes a gantry including an x-ray imaging system configured to generate an x-ray image of a substance and a scatter system configured to generate a diffraction profile of the substance.
Abstract:
A method for developing a virtual representation of an x-ray diffraction imaging system includes generating a symmetry axis, generating a conical shape having a base diameter, a vertex angle α, and a vertex point, locating the vertex point at an origin point on the symmetry axis, and extending a first line and a second line between the vertex point and the conical base such that the first line is separated an angle dφ from the second line in an azimuthal direction around the conical base.
Abstract:
The present invention relates to an X-ray source comprising an electron source (1) for the emission of electrons (E), a target (4) for the emission of characteristic, substantially monochromatic X-rays (C) in response to the incidence of the electrons (E) and an outcoupling means (11) for outcoupling of the X-rays. To achieve characteristic, substantially monochromatic X-rays with a high power loadability electrons are incident on a metal foil (5) of a thickness of less than 10 μm and a base arrangement (7, 12) is arranged wherein the metal of said metal foil (5) has a high atomic number allowing the generation of X-rays (C) and the material substantially included in the base arrangement (7, 12) has a low atomic number not allowing the generation of X-rays (C). The outcoupling means are adapted for outcoupling only X-rays (C) on the side of the metal foil (5) on which the electrons (E) are incident and which is opposite to the side of the base arrangement (7, 12) since on this side almost no bremsstrahlung radiation is generated.
Abstract:
In a solution polymerization process the increase in gel content in the solution at one or more locations may be detected by monitoring the structure of a spectrum obtained by analyzing the reaction at said one or more locations using a spectrometer selected from the group consisting of infrared spectrometers, near infrared spectrometers and Raman spectrometers.
Abstract:
The invention relates to a window transparent to electron rays comprising a foil (1, 10, 300a) transparent to electron rays and separated from a carrier substrate as well as a retaining element (2, 300b) for supporting a peripheral region of the foil transparent to electron rays in the operational state, which retaining element (2, 300b) is made of a material which has a linear thermal expansion coefficient which matches the linear thermal expansion coefficient of the foil material. The invention further relates to a method of manufacturing a window transparent to electron rays and an X-ray device with such a window.
Abstract:
A monochromatic X-ray radiation source includes an anode for producing X-ray radiation, a target enclosed by the anode for converting X-ray radiation into fluorescence radiation and a screen located between the target and the anode for screen the target from electrons. A higher output of fluorescence radiation is attained in that the screen comprises an element having an atomic number greater than 50, for example, tungsten or tantalum.