摘要:
An imprint lithography template including, inter alia, a body having a first thickness associated therewith; a patterning layer, having a second thickness associated therewith, comprising a plurality of features, having a third thickness associated therewith.
摘要:
An imprint lithography template including, inter alia, a body having a first thickness associated therewith; a patterning layer, having a second thickness associated therewith, comprising a plurality of features, having a third thickness associated therewith.
摘要:
Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
摘要:
A nano-imprint lithography template includes a rigid support layer, a cap layer, and a flexible cushion layer positioned between the support layer and the cap layer. Treating an imprint lithography template includes heating the template to desorb gases from the template. Heating the template includes radiating the template at a selected wavelength with, for example, infrared radiation. The selected wavelength may correspond to a wavelength at which the template material is strongly absorbing.
摘要:
Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
摘要:
Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
摘要:
A nano-imprint lithography process includes forming a multiplicity of hydroxyl groups on a surface of a substantially inorganic nano-imprint lithography template, heating the template, and reacting a pre-selected percentage of the hydroxyl groups on the surface of the template with a mono-functional, non-fluorinated compound to form a monolayer coating on the surface of the nano-imprint lithography template. The coated template may be contacted with a polymerizable composition disposed on a nano-imprint lithography substrate, and the polymerizable composition solidified to form a patterned layer. The coated template is separated from the patterned layer.
摘要:
Release agents with increased affinity toward nano-imprint lithography template surfaces interact strongly with the template during separation of the template from the solidified resist in a nano-imprint lithography process. The strong interaction between the surfactant and the template surface reduces the amount of surfactant pulled off the template surface during separation of a patterned layer from the template in an imprint lithography cycle. Maintaining more surfactant associated with the surface of the template after the separation of the patterned layer from the template may reduce the amount of surfactant needed in a liquid resist to achieve suitable release of the solidified resist from the template during an imprint lithography process. Strong association of the release agent with the surface of the template facilitates the formation of ultra-thin residual layers and dense fine features in nano-imprint lithography.
摘要:
A micro-conformal nanoimprint lithography template includes a backing layer and a nanopatterned layer adhered to the backing layer. The elastic modulus of the backing layer exceeds the elastic modulus of the nanopatterned layer. The micro-conformal nanoimprint lithography template can be used to form a patterned layer from an imprint resist on a substrate, the substrate having a micron-scale defect, such that an excluded distance from an exterior surface of the micron-scale defect to the patterned layer formed by the nanoimprint lithography template is less than a height of the defect. The nanoimprint lithography template can be used to form multiple imprints with no reduction in feature fidelity.
摘要:
Densifying a multi-layer substrate includes providing a substrate with a first dielectric layer on a surface of the substrate. The first dielectric layer includes a multiplicity of pores. Water is introduced into the pores of the first dielectric layer to form a water-containing dielectric layer. A second dielectric layer is provided on the surface of the water-containing first dielectric layer. The first and second dielectric layers are annealed at temperature of 600° C. or less. In an example, the multi-layer substrate is a nanoimprint lithography template. The second dielectric layer may have a density and therefore an etch rate similar to that of thermal oxide, yet may still be porous enough to allow more rapid diffusion of helium than a thermal oxide layer.