Abstract:
A microelectromechanical device may include: a semiconductor carrier; a microelectromechanical element disposed in a position distant to the semiconductor carrier; wherein the microelectromechanical element is configured to generate or modify an electrical signal in response to a mechanical signal and/or is configured to generate or modify a mechanical signal in response to an electrical signal; at least one contact pad, which is electrically connected to the microelectromechanical element for transferring the electrical signal between the contact pad and the microelectromechanical element; and a connection structure which extends from the semiconductor carrier to the microelectromechanical element and mechanically couples the microelectromechanical element with the semiconductor carrier.
Abstract:
According to an embodiment, a MEMS device includes a deflectable membrane including a first plurality of electrostatic comb fingers, a first anchor structure including a second plurality of electrostatic comb fingers interdigitated with a first subset of the first plurality of electrostatic comb fingers, and a second anchor structure including a third plurality of electrostatic comb fingers interdigitated with a second subset of the first plurality of electrostatic comb fingers. The second plurality of electrostatic comb fingers are offset from the first plurality of electrostatic comb fingers in a first direction and the third plurality of electrostatic comb fingers are offset from the first plurality of electrostatic comb fingers in a second direction, where the first direction is different from the second direction.
Abstract:
According to an embodiment, a microelectromechanical systems (MEMS) transducer includes a first electrode, a second electrode fixed to an anchor at a perimeter of the second electrode, and a mechanical support separate from the anchor at the perimeter of the second electrode and mechanically connected to the first electrode and the second electrode. The mechanical support is fixed to a portion of the second electrode such that, during operation, a maximum deflection of the second electrode occurs between the mechanical structure and the perimeter of the second electrode.
Abstract:
An electrostatic discharge (ESD) protection element includes a collector area, a first barrier area, a semiconductor area, a second barrier area and an emitter area. The collector area has a first conductivity type. The first barrier area borders on the collector area and has a second conductivity type. The semiconductor area borders on the first barrier area and is an intrinsic semiconductor area, or has the first or second conductivity type and a dopant concentration which is lower than a dopant concentration of the first barrier area. The second barrier area borders on the semiconductor area and has the second conductivity type and a higher dopant concentration than the semiconductor area. The emitter area borders on the second barrier area and has the first conductivity type.
Abstract:
An electrostatic discharge (ESD) protection element includes a collector area, a first barrier area, a semiconductor area, a second barrier area and an emitter area. The collector area has a first conductivity type. The first barrier area borders on the collector area and has a second conductivity type. The semiconductor area borders on the first barrier area and is an intrinsic semiconductor area, or has the first or second conductivity type and a dopant concentration which is lower than a dopant concentration of the first barrier area. The second barrier area borders on the semiconductor area and has the second conductivity type and a higher dopant concentration than the semiconductor area. The emitter area borders on the second barrier area and has the first conductivity type.