Abstract:
A switch device includes a phase change switch and a memory for storing a target state of the phase change switch. A controller determines a phase state of the phase change switch, and, if the state of the phase change switch does not correspond to the target state, controls a heater of the phase change switch to change the state of the phase changes switch to the target state.
Abstract:
In an embodiment, a phase change switch device is provided. The phase change switch includes a phase change material, a set of heaters arranged to heat the phase change material, and a switch arrangement. The switch arrangement includes a plurality of switches, and is configured to selectively provide electrical power to the set of the heaters.
Abstract:
In accordance with an embodiment, a radio frequency (RF) switching circuit includes a plurality of series connected RF switch cells comprising a load path and a control node, a plurality of first gate resistors coupled between control nodes of adjacent RF switch cells, and an input resistor having a first end coupled to a control node of one of the plurality of RF switch cells and a second end configured to an output of a switch driver. Each of the plurality of series connected RF switch cells includes a switch transistor.
Abstract:
A switch device includes a phase change switch and a memory for storing a target state of the phase change switch. A controller determines a phase state of the phase change switch, and, if the state of the phase change switch does not correspond to the target state, controls a heater of the phase change switch to change the state of the phase changes switch to the target state.
Abstract:
In accordance with an embodiment, a circuit includes an RF switch, a leakage compensation circuit having a bias port and a reference port, a replica resistor coupled between a reference node and the reference port of the leakage compensation circuit, and a bias resistor coupled between the bias port of the leakage compensation circuit and a load path of the RF switch. The leakage compensation circuit configured to mirror a current from the bias port to the reference port, and apply a voltage from the reference port to the bias port.
Abstract:
A method for manufacturing a semiconductor device in accordance with various embodiments may include: forming an opening in a first region of a semiconductor substrate, the opening having at least one sidewall and a bottom; implanting dopant atoms into the at least one sidewall and the bottom of the opening; configuring at least a portion of a second region of the semiconductor substrate laterally adjacent to the first region as at least one of an amorphous or polycrystalline region; and forming an interconnect over at least one of the first and second regions of the semiconductor substrate.
Abstract:
In accordance with an embodiment, an integrated circuit includes a substrate, an amplifier MOSFET, and a bias voltage terminal configured to generate a potential difference of the substrate relative to at least one load terminal of the amplifier MOSFET.
Abstract:
In accordance with an embodiment, a radio frequency (RF) switching circuit includes a plurality of series connected RF switch cells comprising a load path and a control node, a plurality of first gate resistors coupled between control nodes of adjacent RF switch cells, and an input resistor having a first end coupled to a control node of one of the plurality of RF switch cells and a second end configured to an output of a switch driver. Each of the plurality of series connected RF switch cells includes a switch transistor.
Abstract:
A circuit includes first, second, third and fourth terminals, and first and second switches. The first switch switches a first signal from the first terminal to the second terminal or from the first terminal to the fourth terminal. The second switch switches a second signal from the third terminal to the second terminal or from the third terminal to the fourth terminal. The first switch comprises a first switching element with a first high-frequency switching transistor connected between the first terminal and the second terminal, and a second switching element with a second high-frequency switching transistor connected between the first terminal and the fourth terminal. The second switch comprises a third switching element with a third high-frequency transistor connected between the third terminal and the second terminal and comprises a fourth switching element with a fourth high-frequency switching transistor connected between the third terminal and the fourth terminal.
Abstract:
An RF switch circuit for switching RF signals includes a first terminal and a second terminal and a series connection of a plurality of transistors between the first terminal of the RF switch circuit and the second terminal of the RF switch circuit. Furthermore, the RF switch circuit includes a control circuit configured to conductively couple, in a high impedance state of the RF switch circuit, the first terminal of the RF switch circuit to a control terminal of a first transistor in a series of the series connection of the plurality of transistors. The second terminal of the RF switch circuit is conductively coupled to a control terminal of a last transistor in the series of the series connection of the plurality of transistors.