Abstract:
A surgical system includes a surgical instrument that is sensitive to backlash that would adversely affect the transmission of controlled torque and position to the surgical instrument. The surgical instrument is coupled to motors in a surgical instrument manipulator assembly via a mechanical interface. The combination of the mechanical interface and surgical instrument manipulator assembly have low backlash, e.g., less than 0.7 degrees. The backlash is controlled in the surgical instrument manipulator assembly. From the drive output disk in the surgical instrument manipulator assembly to the driven disk of the surgical instrument, the mechanical interface has zero backlash for torque levels used in surgical procedures.
Abstract:
A surgical system includes a manipulator, a surgical tool and a control system. The manipulator includes a manipulator mounting base, a pitch mechanism, a roll mechanism and a redundant rotation mechanism. The surgical tool is supported by the manipulator and has a tool shaft axis. The pitch mechanism rotates the surgical tool around a pitch axis. The roll mechanism rotates the surgical tool around a roll axis transverse to the pitch axis. The redundant rotation mechanism rotates the surgical tool around a redundant rotation axis. Each of the tool shaft axis, the pitch axis and the roll axis intersect at a remote center. The control system is configured to electronically communicate with and control operation of the manipulator to articulate the surgical tool during surgery.
Abstract:
A manipulator for articulating a surgical tool during surgery includes an instrument holder, a parallelogram linkage assembly, an offset extension link, a yaw joint, and a mounting base. The instrument holder is configured to couple with the surgical tool. The parallelogram linkage assembly produces motion of the instrument holder that is limited to rotation about a pitch axis that intersects a remote center of manipulation. The offset extension link has an offset extension link distal end and an offset extension link proximal end. The yaw joint is connected to the offset extension link proximal end and produces motion of the instrument holder that is limited to rotation about a yaw axis that intersects the remote center of manipulation. The offset extension link distal end is offset from the yaw axis. The mounting base is coupled with the yaw joint.
Abstract:
A manipulator for articulating a surgical tool during surgery includes an instrument holder, a parallelogram linkage assembly, an offset extension link, a yaw joint, and a mounting base. The instrument holder is configured to couple with the surgical tool. The parallelogram linkage assembly produces motion of the instrument holder that is limited to rotation about a pitch axis that intersects a remote center of manipulation. The offset extension link has an offset extension link distal end and an offset extension link proximal end. The yaw joint is connected to the offset extension link proximal end and produces motion of the instrument holder that is limited to rotation about a yaw axis that intersects the remote center of manipulation. The offset extension link distal end is offset from the yaw axis. The mounting base is coupled with the yaw joint.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.
Abstract:
A surgical system (200) includes a surgical instrument (260) that is sensitive to backlash that would adversely affect the transmission of controlled torque and position to the surgical instrument. The surgical instrument (260) is coupled to motors in a surgical instrument manipulator assembly (240) via a mechanical interface. The combination of the mechanical interface and surgical instrument manipulator assembly (240) have low backlash, e.g., less than 0.7 degrees. The backlash is controlled in the surgical instrument manipulator assembly (240). From the drive output disk (545) in the surgical instrument manipulator assembly to the driven disk (964) of the surgical instrument, the mechanical interface has zero backlash for torque levels used in surgical procedures.
Abstract:
Robotic surgical systems and methods of coupling a surgical instrument to a manipulator arm are provided. In one embodiment, a system includes a base; a setup link operably coupled to the base, the setup link locating a remote center of motion for the robotic surgical system; a proximal link operably coupled to the setup link; and a distal link operably coupled to the proximal link. A plurality of instrument manipulators are rotatably coupled to a distal end of the distal link, each of the instrument manipulators including a plurality of actuator outputs distally protruding from a distal end of a frame.
Abstract:
Robotic surgical systems and methods of coupling a surgical instrument to a manipulator arm are provided. In one embodiment, a system includes a base; a setup link operably coupled to the base, the setup link locating a remote center of motion for the robotic surgical system; a proximal link operably coupled to the setup link; and a distal link operably coupled to the proximal link. A plurality of instrument manipulators are rotatably coupled to a distal end of the distal link, each of the instrument manipulators including a plurality of actuator outputs distally protruding from a distal end of a frame.
Abstract:
A force transmission transmits a force to a primary output gimbal plate and a secondary output gimbal plate. The secondary output gimbal plate supports the primary output gimbal plate. Each of three primary levers is supported by a primary pivot. Each primary lever is coupled to the primary output gimbal plate such that the three couplings are not collinear. Each of three secondary levers is supported by a secondary pivot. Each secondary lever is coupled to one of the primary levers by a force applying connector. Each secondary lever is coupled to the secondary output gimbal plate such that the three couplings are not collinear. The output gimbal plates may be coupled to the levers by flexible cables. The cables may be substantially contained within a tube. The output gimbal plates may be substantially smaller than the input gimbal plate.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.