Abstract:
In a display device, pixels each including first to fourth subpixels that respectively display first to third primary colors and fourth color are arranged on an image display panel. A lighting unit emits light to the panel from the rear thereof. A control unit calculates a required luminance value for each block of the display surface of the panel based on an input image signal, determines a light source lighting amount of the lighting unit based on luminance distribution information on the lighting unit so as to satisfy the required luminance value, generates luminance information on each pixel based on the luminance distribution information and light source lighting amount, generates an output image signal that drives the subpixels based on the luminance information and input image signal, controls the lighting unit by the light source lighting amount, and controls the panel by the output image signal.
Abstract:
A display device includes a display unit in which pixels are arranged in a matrix. The pixels each include a first sub-pixel having the largest area among sub-pixels, a second sub-pixel adjacent to the first sub-pixel and having an area smaller than that of the first sub-pixel, and a third sub-pixel adjacent to the first and second sub-pixels, having an area smaller than that of the first sub-pixel, and arranged in the same column as that of second sub-pixels. First, second, and third pixels are aligned in at least one of a column direction or a row direction and each include the first, second, and third sub-pixels that can display different one of first, second, and third colors. Areas of the first, second, and third colors displayable by the first, second, and third pixels in total are equal to one another.
Abstract:
In a display device, pixels each including first to fourth subpixels that respectively display first to third primary colors and fourth color are arranged on an image display panel. A lighting unit emits light to the panel from the rear thereof. A control unit calculates a required luminance value for each block of the display surface of the panel based on an input image signal, determines a light source lighting amount of the lighting unit based on luminance distribution information on the lighting unit so as to satisfy the required luminance value, generates luminance information on each pixel based on the luminance distribution information and light source lighting amount, generates an output image signal that drives the subpixels based on the luminance information and input image signal, controls the lighting unit by the light source lighting amount, and controls the panel by the output image signal.
Abstract:
According to an aspect, a display device includes: an image display panel; and a plurality of signal processing circuits that are responsible for respective regions in the image display panel, that convert an input value of an input HSV color space of an input signal to each of their own responsible regions into an extension value of an extended HSV color space to generate an output signal of the extension value for the image display panel. The signal processing circuits decide an extension coefficient αA for the image display panel in its entirety in a cooperative manner. The signal processing circuit, regarding its own responsible region, calculates an output signal of each of a first sub-pixel, a second sub-pixel, third sub-pixel, and a fourth sub-pixel.
Abstract:
Disclosed herein is a display apparatus including: a first pixel including three sub-pixels for displaying three primary colors respectively; and a second pixel including three sub-pixels for displaying two colors selected among the three primary colors and a predetermined color other than the three primary colors, wherein, in the first pixel, the size of the display surface of a sub-pixel for displaying a specific color included in the three primary colors as a specific color missing from the second pixel is larger than each of the sizes of the display surfaces of the two other sub-pixels for displaying the two other primary colors respectively.
Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
According to one embodiment, a first substrate includes first to fourth pixel electrodes. A color filter layer includes a red filter opposed to the first pixel electrode, a green filter opposed to the second pixel electrode, a first blue filter opposed to the third pixel electrode and having a peak of transmittance at a wavelength shorter than 460 nm, and a second blue filter opposed to the fourth pixel electrode and having a peak of transmittance at a wavelength longer than 960 nm.
Abstract:
An image processing apparatus includes an image display unit and a luminance control unit. The image display unit includes pixels arranged in a matrix, each of which is formed of a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel, and performs image display. The luminance control unit adjusts a ratio between a generation amount of first luminance generated by the first sub-pixel, the second sub-pixel, and the third sub-pixel and a generation amount of second luminance generated by the fourth sub-pixel. Over all input tones, the luminance control unit makes the generation amount of the second luminance lower than the generation amount of the first luminance and generates the second luminance so that a function representing a luminance value of the second luminance is continuous.
Abstract:
A display device includes a conversion section which generate a data conversion signal including a first number of bits from an input signal, an error dispersion section which generates a display control signal including a second number of bits that is smaller than the first number of bits from the data conversion signal and which spatially disperses errors that occur at the time of generating the display control signal, and a display panel section which displays an image on the basis of the display control signal.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.