摘要:
Disclosed is a shallow trench isolation (STI) forming method for improving STI step uniformity. The method deposits an oxidation layer to a semiconductor structure formed with STIs. After a planarization material layer is formed on the oxidation, then CMP process is performed. By using the method of the present invention, the STI step uniformity can be raised.
摘要:
The invention provides a damascene gate process. A semiconductor substrate having a pad layer and an etch stop layer formed thereon is provided, and an insulating layer is formed to cover the etch stop layer, followed by forming an opening by partially removing the insulating layer, the etch stop layer, and the pad layer. A protective spacer is formed on the sidewall of the opening, wherein the top of the protective spacer is lower than the insulating layer. A gate conducting layer is then formed in the opening. The protective spacer and the insulating layer are removed to expose a portion of the semiconductor substrate and the etch stop layer. Implantation is then performed to form lightly doped drains. Agate spacer is then formed to cover the gate conducting layer. The etch stop layer and the pad layer are removed, and implantation is then performed to a form source/drain.
摘要:
Disclosed is a shallow trench isolation (STI) forming method for improving STI step uniformity. The method deposits an oxidation layer to a semiconductor structure formed with STIs. After a planarization material layer is formed on the oxidation, then CMP process is performed. By using the method of the present invention, the STI step uniformity can be raised.
摘要:
The invention provides a damascene gate process. A semiconductor substrate having a pad layer and an etch stop layer formed thereon is provided, and an insulating layer is formed to cover the etch stop layer, followed by forming an opening by partially removing the insulating layer, the etch stop layer, and the pad layer. A protective spacer is formed on the sidewall of the opening, wherein the top of the protective spacer is lower than the insulating layer. A gate conducting layer is then formed in the opening. The protective spacer and the insulating layer are removed to expose a portion of the semiconductor substrate and the etch stop layer. Implantation is then performed to form lightly doped drains. A gate spacer is then formed to cover the gate conducting layer. The etch stop layer and the pad layer are removed, and implantation is then performed to a form source/drain.
摘要:
A double corner rounding process for a partial vertical cell. A first corner rounding process is performed after etching the substrate to form a shallow trench for device isolation. A second corner rounding process is performed after forming shallow trench isolations (STIs) and exposing the corner of the substrate at the active areas in the memory cell array region.
摘要:
A method for forming an opening in a semiconductor device is provided, including: providing a semiconductor substrate with a silicon oxide layer, a polysilicon layer and a silicon nitride layer sequentially formed thereover; patterning the silicon nitride layer, forming a first opening in the silicon nitride layer, wherein the first opening exposes a top surface of the polysilicon layer; performing a first etching process, using gasous etchants including hydrogen bromide (HBr), oxygen (O2), and fluorocarbons (CxFy), forming a second opening in the polysilicon layer, wherein a sidewall of the polysilicon layer adjacent to the second opening is substantially perpendicular to a top surface of the silicon oxide layer, wherein x is between 1-5 and y is between 2-8; removing the silicon nitride layer; and performing a second etching process, forming a third opening in the silicon oxide layer exposed by the second opening.
摘要翻译:提供了一种在半导体器件中形成开口的方法,包括:向半导体衬底提供其上顺序形成的氧化硅层,多晶硅层和氮化硅层; 图案化氮化硅层,在氮化硅层中形成第一开口,其中第一开口暴露多晶硅层的顶表面; 使用包括溴化氢(HBr),氧(O 2)和碳氟化合物(C x F y)的气体蚀刻剂进行第一蚀刻工艺,在多晶硅层中形成第二开口,其中与第二开口相邻的多晶硅层的侧壁基本上 垂直于氧化硅层的顶表面,其中x在1-5之间,y在2-8之间; 去除氮化硅层; 以及进行第二蚀刻工艺,在由所述第二开口暴露的所述氧化硅层中形成第三开口。
摘要:
A method of bevel trimming a three dimensional (3D) semiconductor device is disclosed, comprising providing a substrate with stack layers thereon and through substrate vias (TSV) therein, wherein an edge of the substrate is curved, performing a bevel trimming step to the curved edge of the substrate for obtaining a planar edge, and thinning the substrate to expose the through substrate vias.
摘要:
An integrated circuit with a self-aligned contact includes a substrate with a transistor formed thereover, a dielectric spacer, a protection barrier, and a conductive layer. The transistor includes a mask layer and a pair of insulating spacers formed on opposite sides of the mask layer. The dielectric spacer partially covers at least one of the insulating spacers of the transistor. The protection barrier is formed over the dielectric spacer. The conductive layer is formed over the mask layer, the protection barrier, the dielectric spacer, the insulating spacer and the dielectric spacer as a self-aligned contact for contacting a source/drain region of the transistor.
摘要:
A vertical MOSFET electrostatic discharge device is disclosed, including a substrate comprising a plurality of trenches, a recessed gate disposed in each trench, a drain region disposed between each of the two neighboring recessed gates, an electrostatic discharge implant region disposed under each drain region, and a source region surrounding and disposed under the recessed gates and the electrostatic discharge implant regions.
摘要:
A power device with trenched gate structure, includes: a substrate having a first face and a second face opposing to the first face, a body region of a first conductivity type disposed in the substrate, a base region of a second conductivity type disposed in the body region, a cathode region of the first conductivity type disposed in the base region, an anode region of the second conductivity type disposed in the substrate at the second face a trench disposed in the substrate and extending from the first face into the body region, and the cathode region encompassing the trench, wherein the trench has a wavelike sidewall, a gate structure disposed in the trench and an accumulation region disposed in the body region and along the wavelike sidewall. The wavelike sidewall can increase the base current of the bipolar transistor and increase the performance of the IGBT.