Abstract:
A compact, high-performance WDM coupler which couples at least three optical fibers is presented. The coupler has the ends of first, second and third optical fibers near a first face of a collimating lens. A wavelength-dependent filter, such as a long-pass filter, a short-pass filter or a band-pass filter, is located near the opposite face of the collimating lens. The wavelength-dependent filter and the ends of the first and second optical fibers are arranged with respect to each other so that light from the first optical fiber and reflected by the wavelength-dependent filter passes into the second optical fiber. Light which passes through the wavelength-dependent filter remains collimated by the collimated lens. Reflecting elements or a second collimating lens in focus with the end(s) of one or more optical fibers can placed next to the wavelength-dependent filter and on the other side of the collimating lens to create variations of the WDM coupler for many applications.
Abstract:
The present invention provides improved optic switches in which the optic fibers and optical pathways need not move. Advantageously, the switches of the present invention generally rely on a combination of a moveable reflective element and at least one fixed collimating lens. The collimating lens typically expands the light signal from a single mode fiber to a substantially larger optic path. When the reflective element is disposed out of this large optic path, the light signals continue on to a first output fiber, often through another collimating lens. However, when the reflective element is disposed within the expanded optic path from the collimating lens, the signal is reflected back through that same collimating lens into an alternative output fiber which is parallel and in close proximity to the input fiber. Conveniently, the reflective element can move across the optic path without changing the position of the input or output fibers relative to each other. Surprisingly, a thin planar reflector which is aligned to reflect one of a pair of signals crossing between two collimating lenses can also reflect the other crossing signal, thereby providing highly efficient multiple signal switching. Hence, by carefully locating a number of optic fibers parallel to each other about the center line of the collimating lens, a wide variety of highly efficient, multiple input and multiple output switching structures can be constructed.
Abstract:
A semiconductor laser source having a laser diode and a fiber Bragg grating is described. The laser diode has first and second facets from which output light is emitted. A first end of the fiber Bragg grating is located near the second facet to receive output light from the laser diode. The fiber Bragg grating has a very narrow linewidth about a selected wavelength and reflects output light in the selected narrow linewidth back into the laser diode through its second facet. The output light emitted from the first facet has a very narrow linewidth about the selected linewidth.
Abstract:
An improved optical isolator of the type having an input optical fiber, a first GRIN lens, a first polarizer, a optical rotator, a second polarizer, a second GRIN lens and an output optical fiber. Lithium niobate birefringent crystals are used for lowered costs and high performance. Improvements also include polishing the end of the input optical fiber at a slant and covering the end with a window coated with antireflection material. The surface of the GRIN lens facing the end of the input optical fiber is slant-polished reciprocally and spaced apart with gap which avoids Fabry-Perot interference.
Abstract:
An improved optical switch having a first optical fiber and a plurality of N optical fibers. The first optical fiber forms an optical path with any one of the N optical fibers by an alignment of a longitudinal axis of an end of the first optical fiber with a longitudinal axis of an end of the one of N optical fibers. A switch in optical path is performed by a relative movement of the first optical fiber with respect to the N optical fibers for a realignment of the longitudinal axis of the end of the first optical fiber with a longitudinal axis of an end of another one of the N optical fibers.
Abstract:
A low-cost, high performance 1.times.N fiber optic coupler where N>16 is presented. The coupler has a GRIN lens having an first optic fiber aligned with the optical axis of the lens at one end of the lens. The first optic fiber ends in a microlens. At the other end of the GRIN lens a bundle of tapered second optic fibers is centered on the optical axis of the lens.
Abstract:
The present invention provides for a compensating element in the form of a birefringent plate in an optical isolator which uses a first GRIN lens to collimate the light signal from an input optical fiber, a first birefringent polarizer wedge, an optical Faraday rotator, a second birefringent polarizer wedge, and a second GRIN lens to recollimate the light signal to an output optical fiber. Polarization mode dispersion through said optical isolator is substantially reduced by arranging the fast optical axis of the plate to be perpendicular to the fast optical axis of the polarizer on the same side of the Faraday rotator as the plate and selecting the thickness of the plate in a predetermined manner. The present invention also allows for minimization of "walk-off", which also contributes to some polarization mode dispersion through the isolator.
Abstract:
An optical fiber having an improved input fiber end for an optical isolator. The end of the fiber has a flat end surface substantially perpendicular to the longitudinal axis of the fiber. An optical barrier layer, formed by a layer of chromium and a layer of gold, covers the end surface of the fiber with an aperture exposing the core and covering the cladding of the fiber. Light transmission into the end is substantially reduced to increase the reflection loss of the optical isolator.
Abstract:
An improved optical switch having a first optical fiber and a plurality of N optical fibers. The first optical fiber forms an optical path with any one of the N optical fibers by an alignment of a longitudinal axis of an end of the first optical fiber with a longitudinal axis of an end of the one of N optical fibers. A switch in optical path is performed by a relative movement of the first optical fiber with respect to the N optical fibers for a realignment of the longitudinal axis of the end of the first optical fiber with a longitudinal axis of an end of another one of the N optical fibers.
Abstract:
An improved optical isolator of the type having an input optical fiber, a first GRIN lens, a first polarizer, a optical rotator, a second polarizer, a second GRIN lens and an output optical fiber. Lithium niobate birefringent crystals are used for lowered costs and high performance. Improvements also include polishing the end of the input optical fiber at a slant and covering the end with a window coated with antireflection material. The surface of the GRIN lens facing the end of the input optical fiber is slant-polished reciprocally and spaced apart with gap which avoids Fabry-Perot interference.