摘要:
In ARFI imaging, a cost function is used to identify a time of displacement that best or sufficiently indicates the desired information. For example, the displacements associated with a combination of contrast and signal-to-noise ratio are identified. The time at which the desired displacements occur may be other than the time of the maximum. Since the time is common to displacements for one or more scan lines, the displacement image may be assembled line-by-line or by groups of lines.
摘要:
Shear wave imaging is provided in medical diagnostic ultrasound. A region is imaged to determine a location in which to calculate shear velocity. The shear velocity is estimated for the location. The imaging may guide the identification of the location, reducing the time to determine useful shear information. The estimate of shear may be validated, such as using cross-validation, to indicate the confidence level of the shear value. The shear velocity may be displayed relative to a scale of shear velocities associated with a type of tissue, such as tissue for an organ. The location on a scale may be more intuitive for a user.
摘要:
Tissue density is quantified using shear wave information in medical ultrasound scanning. Measurements of the tissue reaction to shear waves indicate tissue density. For example, shear wave velocity is linked with density using clinical study information. The shear wave velocity in a region, over the entire tissue, or at various locations is used to determine a corresponding density or densities. The tissue density information is used for categorization, estimation of disease risk, imaging, diagnosis, or other uses. The tissue may be breast tissue or other tissue.
摘要:
A shear wave velocity solution is provided for medical ultrasound imaging. Rather than determining shear wave information for each location based on distance from the origin of the shear wave and time to peak displacement for the location, displacement profiles resulting from different combinations of origin and detection locations are correlated. Shear information is detected using displacements from a diverse spatial combination of transmission locations and detection locations. The correlation combination is used in a same function for simultaneously solving for the delays for multiple lateral locations. Spatial diversity and layered correlation may provide for more accurate shear wave estimation.
摘要:
Temperature related information or a temperature characteristic is detected, at least in part, with a medical diagnostic ultrasound system. Anatomy information from an ultrasound scan is used with modeling to determine the temperature or other temperature related parameter. Ultrasound information may be obtained in real-time with application of thermal therapy, so may be used to better control thermal treatment. The anatomy information may be used to align model features measured from a region. The anatomy information may be used as an input into the model. The anatomy information may be used to select an appropriate model, such as selection based on the type of tissue. The anatomy information may be used to correct an output of the model, such as accounting for temperature distribution due to an adjacent vessel.
摘要:
Feedback of position is provided for high intensity focused ultrasound. The location of a beam from a HIFU transducer is determined using ultrasound imaging. The ultrasound imaging detects tissue displacement caused by a beam transmitted from the HIFU transducer. The displacement or information derived from the displacement may be used to determine a center line or point location (e.g., foci) of the tissues response to HIFU. The location of the line or point may be displayed in an image, such as an overlay or by color coding.
摘要:
Separate renderings are performed for data of a same medical imaging mode. The data is processed differently prior to rendering and/or rendered differently to enhance desired image information. For example, a same set of ultrasound B-mode data is rendered with opacity rendering and with maximum intensity projection or surface rendering. The surface or maximum intensity projection highlights strong transitions associated with bones. The opacity rendering maintains tissue information. Different sets of B-mode data may be separately rendered, such as one set processed to emphasize contrast agent response and another set processed to emphasize tissue. The separate renderings are aligned and combined. The combined rendering is output as an image.
摘要:
Methods and systems for detecting a border in a medical image are provided. A boundary is chosen as a connected curve whose tangent is substantially perpendicular to the gradient of the image everywhere along the curve. As an alternative to a tangent, a normal or other border direction may be used. At a given point within the image, the tangent to the boundary and the image gradient direction are orthogonal. Using an initial boundary detection, the boundary associated with the minimum cost or associated with the closest boundary where the boundary tangent and the image gradient directional are orthogonal for locations along the boundary is identified. By refining an initial border location to minimize divergence from the boundary tangent being orthogonal to the image gradient direction or by identifying a border based on the orthogonal relationship, accurate border detection may be provided in ultrasound images as well as other medical images.
摘要:
Motion of a region of interest is tracked in medical imaging. For example, velocity information, such as colored Doppler velocity estimates independent of tracking from one image to another image, are used to indicate an amount of motion between the images. The velocity assisted tracking may be used for one dimensional tracking (e.g., for M-mode images), for tracking in two dimensional images, or for tracking between three dimensional representations. As an alternative or additional example, physiological signal information is used to assist in the tracking determination. A physiological signal may be used to model the likely movement of an organ being imaged to control or adjust matching search patterns and limits. The modeling may also be used to independently determine movement or for tracking. The independently determined tracking is then combined with tracking based on medical data or other techniques. The cost function or other metric for determining the sufficiency or a match may include information modeled from or selected as a function of the physiological cycle signal in addition to other matching calculations. The fusion of physiological signal information with image data tracking may improve the tracking.
摘要:
The present invention relates generally to a medical device, and more particularly to ultrasound apparatus and methods for the identification and characterization of tissues, tissue transitions and tissue constituent structures.