Abstract:
A lead includes a plurality of electrodes disposed on the distal end of the lead, a plurality of contact terminals disposed on the proximal end of the lead, a plurality of conductor wires extending along the lead to couple the electrodes electrically to the contact terminals, a central lumen defined by the lead and extending from the proximal end of the lead towards the distal end of the lead, and a tubular stiffener disposed in the proximal end of the central lumen. The tubular stiffener is configured and arranged to facilitate insertion of the proximal end of the lead into a connector.
Abstract:
A lead anchor includes a body defining at least one first portion of a lead lumen, the body having a first opening and a second opening. An obstructing member is disposed within the body. The obstructing member defines a second portion of the lead lumen. A spring is disposed in the body and configured and arranged to operate on the obstructing member so that the second portion of the lead lumen is coterminous with the at least one first portion of the lead lumen and forms a continuous lead path when the spring is compressed and the second portion of the lead lumen is offset from the at least one first portion of the lead lumen when the spring is not compressed.
Abstract:
A lead extension for an electrical stimulation system includes a connector disposed on a first end of a body. The connector includes a housing defining at least one port. Each of the at least one ports is configured to receive a proximal end of a lead. A plurality of connector contacts are disposed in each of the at least one ports. The connector contacts are configured to electrically couple to terminals of a lead when the lead is received by the housing. A first connector flange extends outwardly from a first side of the housing. A plurality of conductors extend along a length of the lead extension and electrically couple at least one of the connector contacts to at least one terminal disposed on a second end of the body.
Abstract:
An insertion kit includes a lead and a splitable member configured and arranged for receiving the lead when implanting the lead into a patient. The lead has a distal end and at least two proximal ends. The lead includes a plurality of electrodes disposed at the distal end, a plurality of terminals disposed at the proximal ends, and a plurality of conductive wires coupling the plurality of electrodes electrically to the plurality of terminals. The lead also includes a junction coupling the distal end of the lead to the proximal ends of the lead. The splitable member defines a lumen for receiving the distal end of the lead and is configured and arranged to divide into at least two parts for removal of the splitable member from the lead upon implantation of the lead into the patient.
Abstract:
A lead assembly includes a lead with a distal end and a proximal end. The lead includes a plurality of electrodes disposed at the distal end and a plurality of terminals disposed at the proximal end. The lead also defines at least one central lumen and a plurality of outer lumens. The central and outer lumens extend from the proximal end to the distal end such that the plurality of outer lumens extend laterally from the at least one central lumen. The lead further includes a plurality of conductive wires. Each conductive wire couples at least one of the plurality of electrodes electrically to at least one of the plurality of terminals. At least two conductive wires are disposed in each of the plurality of outer lumens.
Abstract:
An implantable lead includes a first lead assembly with a distal tip and a medial end, a medial section with a first end and a second end, and a first intermediate assembly disposed between the first lead assembly and the first end of the medial section. The first lead assembly includes a plurality of external contacts and at least one conductive wire disposed in the first lead assembly. The at least one conductive wire extends from at least one external contact towards the medial end of the first lead assembly. The medial section includes a plurality of conductors extending from the first end to the second end. The first intermediate assembly includes a plurality of conductive elements. At least one of the conductive elements is configured and arranged to electrically couple the at least one conductive wire to at least one of the conductors.
Abstract:
A lead assembly includes a lead and a stylet. The lead has a distal end, a proximal end, and an outer lead covering. The lead includes a plurality of electrodes disposed at the distal end, a plurality of terminals disposed at the proximal end, and at least one lumen defined in the lead that extends from the distal end to the proximal end. The lead also includes a plurality of conductive wires electrically coupling the plurality of electrodes to the plurality of terminals. The stylet is configured and arranged for inserting into one of the at least one lumens of the lead. The stylet includes an elongated body and a protective feature that is coupled to the elongated body. The protective feature is configured and arranged for absorbing or redirecting an amount of force applied to the stylet above a threshold amount of force.
Abstract:
A method of manufacturing a device for brain stimulation includes forming a lead body having a distal end section and coupling at least one pre-electrode to the distal end section of the lead body. The pre-electrode defines a divider with a plurality of partitioning arms, and has a plurality of fixing lumens. A portion of the pre-electrode aligned with the portioning arms is removed to divide the pre-electrode into a plurality of segmented electrodes. Each of the plurality of segmented electrodes defines at least one of the plurality of fixing lumens at least partially disposed through the segmented electrode. A material is introduced through the at least one fixing lumen to couple the plurality of segmented electrodes to the lead body.
Abstract:
An electrical stimulation lead includes a plurality of conductive contacts disposed at a distal end and a proximal end of a lead body. The plurality of conductive contacts includes a plurality of electrodes and a plurality of terminals. At least one of the conductive contacts is a first conductive contact that includes at least one adhesive aperture defined between an inner surface and an outer surface of the at least one conductive contact. A plurality of conductors each electrically couple at least one of the electrodes to at least one of the terminals. Each first conductive contact has a conductor associated with, and electrically coupled to that first conductive contact. The adhesive is disposed in proximity to the at least one adhesive aperture of at least one first conductive contact to adhesively couple that first conductive contact to the at least one associated conductor.
Abstract:
A lead anchor comprises a housing, and a plunger. The housing comprises a rigid body and a flexible covering disposed over at least a portion of the rigid body. The housing defines a first opening and a second opening configured and arranged to receive a lead. The housing further defines a transverse lumen. The rigid body comprises one or more projecting locking ridges extending into the transverse lumen. A plunger comprising one or more locking detents disposed thereon is configured and arranged for insertion into the transverse lumen and engaging a lead and locking with the housing by engagement of at least one of the one or more locking ridges of the housing with at least one of the one or more locking detents of the plunger. At least one suture element is formed by the flexible covering for receiving a suture to suture the lead anchor to patient tissue.