摘要:
A multi-color electrophoretic medium contains first, second and third species of particles, the particles having substantially non-overlapping electrophoretic mobilities and bring of three different colors. The particles are dispersed in a fluid having a fourth color. A method for driving such a display is also described.
摘要:
A multi-color electrophoretic medium contains first, second and third species of particles, the particles having substantially non-overlapping electrophoretic mobilities and bring of three different colors. The particles are dispersed in a fluid having a fourth color. A method for driving such a display is also described.
摘要:
An electrophoretic medium has walls defining a microcavity containing an internal phase. This internal phase comprises electrophoretic particles suspended in a suspending fluid and capable of moving therethrough upon application of an electric field to the electrophoretic medium. The average height of the microcavity differs by not more than about 5 μm from the saturated particle thickness of the electrophoretic particle divided by the volume fraction of the electrophoretic particles in the internal phase.
摘要:
Disclosed herein are novel electrophoretic displays and materials useful in fabricating such displays. In particular, novel encapsulated displays are disclosed. Particles encapsulated therein are dispersed within a suspending, or electrophoretic, fluid. This fluid may be a mixture of two or more fluids or may be a single fluid. The displays may further comprise particles dispersed in a suspending fluid, wherein the particles contain a liquid. In either case, the suspending fluid may have a density or refractive index substantially matched to that of the particles dispersed therein. Finally, also disclosed herein are electro-osmotic displays. These displays comprise at least one capsule containing either a cellulosic or gel-like internal phase and a liquid phase, or containing two or more immiscible fluids. Application of electric fields to any of the electrophoretic displays described herein affects an optical property of the display.
摘要:
A method and product for reducing reflected light glare into a human's eyes from the human's cheeks while simultaneously providing a non-verbal communication to others is provided, especially for use by participants in athletic contests. Underneath the human's eyes on the cheeks at a reflective location on the cheeks at which incident direct or indirect light is likely to be reflected into a human's eyes a non-toxic, non-reflective colored and finished material in the form of a predefined clearly demarcated geometric shape is applied. Within a week after the application (typically within less than a few hours after the athletic contest is over) the non-reflective material is removed. The non-reflective material may comprise eye black, applied using a stencil, or it may comprise a temporary tattoo or decal, applied in the conventional manner. The shape preferably is a sports apparel or equipment manufacturer's or distributor's logo and/or letters, or a team name, mascot or logo. The material is preferably black or dark colored, and any non-black or non-dark colored portions providing demarcation between elements of the shape comprises a dull or matte color having a wavelength of greater than about 650 nm and less than about 470 nm.
摘要:
Novel addressing schemes for controlling electronically addressable displays include a scheme for rear-addressing displays, which allows for in-plane switching of the display material. Other schemes include a rear-addressing scheme which uses a retroreflecting surface to enable greater viewing angle and contrast. Another scheme includes an electrode structure that facilitates manufacture and control of a color display. Another electrode structure facilitates addressing a display using an electrostatic stylus. Methods of using the disclosed electrode structures are also disclosed. Another scheme includes devices combining display materials with silicon transistor addressing structures.
摘要:
The invention features an electrophoretic display element. The display element includes an electrophoretic display medium, an optical biasing element to modify an optical characteristic of the electrophoretic display element, and an addressing electrode to address the electrophoretic display medium. The optical biasing element may include, for example, a distinct layer of material, or may include particles or molecules embedded in a layer of the display element.
摘要:
Disclosed herein are novel electrophoretic displays and materials useful in fabricating such displays. In particular, novel encapsulated displays are disclosed. Particles encapsulated therein are dispersed within a suspending, or electrophoretic, fluid. This fluid may be a mixture of two or more fluids or may be a single fluid. The displays may further comprise particles dispersed in a suspending fluid, wherein the particles contain a liquid. In either case, the suspending fluid may have a density or refractive index substantially matched to that of the particles dispersed therein. Finally, also disclosed herein are electro-osmotic displays. These displays comprise at least one capsule containing either a cellulosic or gel-like internal phase and a liquid phase, or containing two or more immiscible fluids. Application of electric fields to any of the electrophoretic displays described herein affects an optical property of the display.
摘要:
Novel addressing schemes for controlling electronically addressable displays include a scheme for rear-addressing displays, which allows for in-plane switching of the display material. Other schemes include a rear-addressing scheme which uses a retroreflecting surface to enable greater viewing angle and contrast. Another scheme includes an electrode structure that facilitates manufacture and control of a color display. Another electrode structure facilitates addressing a display using an electrostatic stylus. Methods of using the disclosed electrode structures are also disclosed. Another scheme includes devices combining display materials with silicon transistor addressing structures.