Abstract:
A method forming a tri-gate fin field effect transistor includes forming an oxide layer over a silicon-on-insulator wafer comprising a silicon layer, and etching the silicon and oxide layers using a rectangular mask to form a mesa. The method further includes etching a portion of the mesa using a second mask to form a fin, forming a gate dielectric layer over the fin, and forming a tri-gate over the fin and the gate dielectric layer.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first layer of semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.
Abstract:
Dopant deactivation of source/drain extensions during silicidation is reduced by forming deep source/drain regions using a disposable dummy gate as a mask, forming metal silicide layers on the deep source/drain regions, removing the dummy gate and then forming the source/drain extensions using laser thermal annealing. Embodiments include angular ion implantation, after removing the dummy gate, to form spaced apart pre-amorphized regions, ion implanting to form source/drain extension implants extending deeper into the substrate than the pre-amorphized regions, and then laser thermal annealing to activate the source/drain extensions having a higher impurity concentration at the main surface of the substrate than deeper into the substrate. Subsequent processing includes forming sidewall spacers, a gate dielectric layer and then the gate electrode.
Abstract:
The invention provides an improved well structure for electrically separating n-channel and p-channel MOSFETs. The invention first forms a shallow well in a substrate. A buried amorphous layer is then formed below the shallow well. A deep well is then formed below the buried amorphous layer. The substrate is then subjected to a rapid thermal anneal to recrystallize the buried amorphous layer. The well structure is formed by the shallow well and the deep well. A conventional semiconductor device may then be formed above the well structure. The buried amorphous layer suppresses the channeling effect during the forming of the deep well without requiring a tilt angle.
Abstract:
A method facilitates the doping of fins of a semiconductor device that includes a substrate. The method includes forming fin structures on the substrate, where each of the fin structures includes a cap formed on a fin. The method further includes performing a first tilt angle implant process to dope a first one of the fins with n-type impurities and performing a second tilt angle implant process to dope a second one of the fins with p-type impurities.
Abstract:
In many packetized communication networks, it is not feasible to obtain exact counts of traffic (OD counts) between specific origin-destination node pairs, because the link counts that are readily obtainable at router interfaces are aggregated indiscriminately over OD pairs. The best that can be done is to make a probabilistic inference concerning the OD counts from the observed link counts. Such an inference relies upon a known linear relationship between observed link counts and unknown OD counts, and a statistical model describing how the values of the OD and link counts are probabilistically distributed. Disclosed is an improved method for making such inferences. The disclosed method takes explicit account of past data when forming a current estimate of the OD counts. As a consequence, behavior that evolves in time is described with improved accuracy and smoothness.
Abstract:
A method of manufacturing a semiconductor device comprises steps of: (a) providing a semiconductor substrate comprising an upper, tensilely strained lattice semiconductor layer and a lower, unstressed semiconductor layer; and (b) forming at least one MOS transistor on or within the tensilely strained lattice semiconductor layer, wherein the forming comprises a step of regulating the drive current of the at least one MOS transistor by adjusting the thickness of the tensilely strained lattice semiconductor layer. Embodiments include CMOS devices formed in substrates including a strained Si layer lattice-matched to a graded composition Si—Ge layer, wherein the thickness of the strained Si layer of each of the PMOS and NMOS transistors is adjusted to provide each transistor type with maximum drive current.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.
Abstract:
A FinFET-type semiconductor device includes a fin structure on which a relatively thin amorphous silicon layer and then an undoped polysilicon layer is formed. The semiconductor device may be planarized using a chemical mechanical polishing (CMP) in which the amorphous silicon layer acts as a stop layer to prevent damage to the fin structure.
Abstract:
A method for improving the channel doping profile of deep-submicron field effect transistors and MOSFETs. The method involves a highly localized halo implant formed in the channel region but not in the source/drain junction. The halo implant is performed through a gap formed by removal of a temporary spacer. The MOSFET is then further completed.