摘要:
The present invention relates to a mobile terminal device, a base station and a method that make it possible to use a channel quality indicator, CQI, reporting format for CQI reporting from the mobile terminal device to the base station, which CQI reporting format depends on a selected transmit antenna configuration. The mobile terminal device is arranged to receive a signal from a number of transmit antennas, which signal includes a number of subcarriers, and to determine the CQI, reporting format for a collection of the subcarriers based on the selected transmit antenna configuration. The mobile terminal device is further arranged to determine a number of CQI values relating to said subcarriers in accordance with the determined CQI reporting format and to transmit the CQI values to the base station in a feedback signal. The CQI reporting format is adapted to the selected transmit antenna configuration such that the granularity of CQI reporting depends on the selected transmit antenna configuration.
摘要:
A base station and method are described herein that vertically sweeps an antenna beam within a cell to improve the signal quality at scheduled times for a user terminal located within a coverage area of the cell. In one embodiment, the method improves a signal quality for a user terminal by: (a) vertically sweeping a beam within a cell coverage area to vary a signal quality at scheduled times for the user terminal located within the cell coverage area; and (b) performing one or more scheduling functions while taking into account variations in the vertical sweep of the antenna beam. For instance, the scheduling function(s) can include a link adaptation function, a resource allocation function, a user admittance/dropping function, a handover function, and/or a hybrid automatic repeat request function.
摘要:
The present invention relates to a method and arrangement to enhance the communication performance in wireless communication systems. The method of the invention provides better adjustment of reported SINR in MIMO, and PARC-MIMO based communication systems. According to the method information relating to signal-to-interference-plus-noise ratio is determined by the user equipment and reported to the base station. The base station adjust reported SINRs using a model of the SINR dependences of power and code allocation. The dependences is modeled by a function comprising a first parameter relating only to power allocation and a second parameter relating only to code allocation. The first parameter has a power allocation exponent and the second parameter has a code allocation exponent. Both the power allocation exponent and the code allocation exponent are data stream dependent.
摘要:
The present invention relates to control signaling in wireless communication systems. In particular, the present invention relates to control signaling in MIMO based communication systems. In the method according to the invention control information is transferred from a base station to at least one user equipment, via a plurality of common pilot channels. A set of unique pilot sequences has been pre-defined, and the base station assigns specific pilot sequences from the set of pilot sequences to specific common pilot channels, forming a pilot sequence assignment pattern representing a specific control information. The user equipment, having knowledge of the relations between pilot sequence assignment patterns and control information, interprets the received pilot sequence assignment pattern as specific control information. The method is particularly well suited for broadcast type control information.
摘要:
A base station is described herein which implements a method that uses different aspects of reported channel quality information (CQI) measurements to help select the “best” transmit antenna(s) on which to transmit control channel information to mobile terminal(s). The base station can also transmit a format indicator to communicate the assigned control channel transmit antenna(s) and the assigned data transmit antenna(s) to the mobile terminal(s).
摘要:
A receiver reduces interference in a received symbol of interest attributable to an interfering symbol using knowledge of the symbol spreading codes. The receiver comprises a plurality of correlators generating despread values for the received symbol of interest and the interfering symbol, and a combiner to combine the despread values using combining weights calculated based on spreading code correlations between spreading codes for the received symbol of interest and the interfering symbol.
摘要:
A wireless communication receiver improves signal impairment correlation estimation in MIMO/MISO systems by considering different transmit power allocations and different transmit antenna power distributions in its impairment correlation calculations. The receiver may be implemented in according to a variety of architectures, including, but not limited to, Successive Interference Cancellation (SIC) Generalized RAKE (G-RAKE), Joint Detection (JD) G-RAKE, and Minimum Mean Squared Error (MMSE) G-RAKE. Regardless of the particular receiver architecture adopted, the improved impairment correlations may be used to calculate improved (RAKE) signal combining weights and/or improve channel quality estimates for reporting by receivers operating in Wideband CDMA (W-CDMA) systems transmitting HSDPA channels via MIMO or MISO transmitters. A transmitter may be configured to facilitate impairment correlation determinations by wireless communication receivers operating in MIMO/MISO environments, by signaling one or more values, e.g., data-to-pilot signal transmit power ratios and/or transmit antenna power distributions for the data and pilot signals.
摘要:
An adaptive transmission scheme provides multiple levels of adaptation. At a first level, a selection is made between a limited feedback or limited feedback scheme and a rich feedback scheme. At a second level of adaptation, a diversity mode is selected. Additional levels of adaptation could be employed.
摘要:
A mobile terminal measures interference over multiple measurement periods and generates interference probability data based on the statistical distribution of the interference measured. The interference probability data may describe, for example, the probability of each possible level of interference expected at the mobile terminal. The mobile terminal derives channel quality information as feedback to a base station based on this interference probability data (e.g., when noise at the mobile terminal falls below a threshold). In one embodiment, the mobile terminal does so by estimating from the interference probability data the probability of successfully receiving a transmission if certain feedback information is reported. Derived in this way, the feedback information more reliably indicates interference likely present at the mobile terminal when the base station sends the transmission. Accordingly, the base station controls the transmission based on the feedback information, and in some embodiments, also based on the interference probability data.
摘要:
Operating a user equipment in a mobile communication system includes generating a measure of reliability of a predicted channel estimate and of impairment stability, wherein the predicted channel estimate is a predicted estimate of a channel between the user equipment and a node of the mobile communications system. Transmission of a channel quality report to the node of the mobile communication system is controlled as a function of the generated measure of reliability of the predicted channel estimate and of impairment stability. Transmission control includes inhibiting transmission of the channel quality report to the node of the mobile communication system for a duration of time corresponding to the measure of reliability of the predicted channel estimate and of impairment stability.