摘要:
A single cell for a fuel cell in which an air electrode or a fuel electrode includes at least two layers. The air electrode includes an adhering cathode layer formed on one surface of the solid electrolyte layer and configured to show a function to allow the air electrode and the solid electrolyte layer to adhere electrically and mechanically to each other, and an electricity collecting cathode layer formed on the adhering cathode layer and configured to show an electricity collecting function of the air electrode. Alternatively, the fuel electrode includes an adhering anode layer formed on the other surface of the solid electrolyte layer and configured to show a function to allow the fuel electrode and the solid electrolyte layer to adhere electrically and mechanically to each other, and an electricity collecting anode layer formed on the adhering anode layer and configured to show an electricity collecting function.
摘要:
An aspect of the present invention provides a fuel cell that includes, hollow structural bodies each provided with an internal space for reacting a fuel gas and an oxidant gas, each hollow structural body including, a separator having a perimeter wall section that follows along a rim, a cell plate having an electricity-generating cell having its outer perimeter joined to the separator such that a space for a gas to flow through is formed between the separator and the cell plate, a gas supply manifold to supply one of the reactant gases, a gas discharge manifold to discharge the reactant gas, and a gas introducing flow passage to introduce said reactant gas from the gas supply manifold to the perimeter wall section of the separator, wherein the reactant gas introduced into the gas introducing passage flows from the vicinity of the perimeter wall section of the separator to the gas discharge manifold.
摘要:
A fuel cell comprises: a cell plate (11; 110; 110A, 110B); an electroconductive gas separator (13; 130; 130A; 130B) which cooperates with the cell plate, to form a gas passage; and a holder member (15; 150; 150A; 150B) which holds a part of the cell plate. The cell plate includes a supporting body (37; 370; 370A; 370B), and a cell (39; 390; 390A; 390B) formed on the supporting body. The cell includes a solid electrolyte (43), a cathode substance layer (45) formed on one surface of the solid electrolyte, and an anode substance layer (41) formed on the other surface of the solid electrolyte.
摘要:
A cell plate structure for a solid oxide electrolyte type fuel cell is provided with a lower electrode layer, an upper electrode layer provided in opposition to the lower electrode layer, a solid electrolyte layer provided between the lower electrode layer and the upper electrode layer, and an area provided in at least one of the lower electrode layer and the upper electrode layer. The area has a portion which is formed by removing a substance, contained in the at least one of the lower electrode layer and the upper electrode layer during formation thereof, after the at least one of the lower electrode layer and the upper electrode layer has been formed. Such a fuel cell plate structure can be applied to a solid electrolyte fuel cell representatively by being disposed between a pair of separators that have gas flow passages supplying the lower electrode layer and the upper electrode layer with gasses, respectively.
摘要:
A solid electrolyte fuel cell system includes a reformer to produce a hydrogen-rich reformed gas from fuel, oxygen and water, and a stack structure including a stack of fuel cell units each receiving supply of the reformed gas and air, and producing electricity. The fuel cell system further includes a reformed gas cooler to cool the reformed gas supplied from the reformer to the stack structure, and a temperature control section to control operation of the reformed gas cooler in accordance with an operating condition such as a request output of the stack structure. The reformed gas cooler includes a device such as a heat exchanger for cooling the reformed gas with a coolant such as air.
摘要:
A fuel cell system includes: a power generation stack (1) composed by stacking a plurality of fuel cells (10); and a hydrocarbon-oxidizing device (2) disposed on an upstream side of the power generation stack (1) in a fuel supply passage (8). The hydrocarbon-oxidizing device (2) directly and electrochemically oxidizes hydrocarbons with a carbon number of 2 or more, which are contained in fuel gas, or decomposes the hydrocarbons and electrochemically oxidizes carbon obtained by decomposing the hydrocarbons.
摘要:
A fuel cell apparatus (A1) includes a stack structure (B) including a plurality of solid electrolyte cell units (10) stacked with interspaces separating one another, and a case (20) enclosing the stack structure (B). The fuel cell apparatus (A1) further includes an inlet port (30) to introduce a reactant gas into the case (20), an outlet port (40) to discharge the reactant gas from the case (20), and a gas guide (50) extending from the inlet port (30) along an outer periphery of the stack structure (B). The gas guide (50) may include at least one guide member (50), and a heat transfer section.
摘要:
For an enhanced rigidity and suppressed occurrences of stress concentration, a solid-electrolyte fuel cell is configured with simplex cells, a metallic separator of a circular thin-sheet form having a gas introducing port and gas discharging ports in the central portion, and cell mounting parts for the simplex cells to be fixed thereto, another metallic separator of a circular thin-sheet form having a gas introducing port and gas discharging ports in the central portion, the separators defining a space in between, and a pair of flow channel members accommodated in the space and pressed to be brought into abutment, for communication of their channels with the gas introducing ports and the gas discharging ports to effect gas supply and gas discharge to and from the space, either flow channel member being joined, within the space, to one separator.
摘要:
The disclosure relates to a fuel cell including a solid electrolyte layer disposed on a separator plate. Another separator plate positioned adjacent the separator plate mounting the solid electrolyte layer are joined to a surface of the first separator plate to form an electrode separator assembly having a chamber between the joined separator plates. Working fluids may be supplied to or exhausted from the chamber through openings in fluid communication. A porous support member may be positioned within the chamber. The first separator plate and the porous support member may include a multiplicity of ribs defining channels in fluid communication with the chamber.
摘要:
A fuel cell collector structure of the present invention includes a single cell which is formed by sandwiching a plate-shaped solid electrolyte between a fuel electrode and an air electrode, a collector which is provided at a position adjacent to the single cell, and a separator which is provided at the position adjacent to the collector. In the fuel cell collector structure, the collector is made of a porous electric conductor having a plurality of apertures on a surface, the single cell and/or the separator has a plurality of electrically conductive projections on the surface, and the projections intrude into the apertures to come into contact with the collector.