Abstract:
A communication method of a wireless power receiver for receiving power in a wireless manner, includes generating information of the wireless power receiver based on a load modulation within a slot being allocated to the wireless power receiver while wireless power is received from a wireless power transmitter; receiving the wireless power from to the wireless power transmitter; generating first information of the wireless power receiver based on the load modulation within a first unallocated slot among the plurality of slots, wherein the first information is in collision with second information generated by another wireless power receiver; demodulating a collision related signal of the wireless power transmitter based on a frequency shift keying (FSK); and executing a collision resolution mechanism.
Abstract:
A wireless power transmitter that transfers power to a wireless power receiver includes a coil assembly comprising first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a series capacitance; a shielding extending to at least 2 mm beyond an outer boundary of the coil assembly, has a thickness of at least 1.5 mm and being composed of Mn—Zn; and a full-bridge inverter driving each of coils included in the coil assembly individually.
Abstract:
A reradiation antenna comprises, an insulation plate; a loop-shaped radiation unit formed on one surface of the insulation plate, disposed along an outer circumference of the insulation plate, and having one end and the other end disposed to be adjacent to each other; a ground connected to the end of the radiation unit; and a power supply unit connected to the other end of the radiation unit so as to supply power, and can receive a wireless signal and transmit the wireless signal to a terminal without degrading the performance of a wireless charging device.
Abstract:
A communication method of a wireless power transmitter for transferring power in a wireless manner, includes allocating a slot among a plurality of slots to a first wireless power receiver, the slot being allocated to the first wireless power receiver for acquiring information of the first wireless power receiver while wireless power is transferred to the first wireless power receiver; transferring the wireless power to the first wireless power receiver by the wireless power transmitter; detecting a second wireless power receiver by the wireless power transmitter during the wireless power transfer to the first wireless power receiver; and generating a collision related signal based on a frequency shift keying (FSK) such that a collision resolution mechanism is executed by each of the first and second wireless power receivers respectively when first information generated by the first wireless power and second information generated by the second wireless power are in a collision within a first unallocated slot among the plurality of slots, the first information and the second information being generated based on a load modulation.
Abstract:
Provided is a method for controlling flight of a drone and an apparatus supporting the same. More specifically, the drone according to the present invention determines whether or not a specific condition is satisfied to deploy a parachute during the flight, and in a case where the specific condition is satisfied, the drone may stop an operation of one or more propellers to deploy the parachute. Next, the drone deploys the parachute, the parachute is deployed toward an area beside the drone, and the flight of the drone may be controlled by adjusting a rotation speed of each of the one or more propellers.
Abstract:
The present invention provides a method for charging a battery of an unmanned aerial robot at a station. More specifically, the station monitors a voltage of the battery and charges the battery using wired charging or wireless charging when the voltage of the battery is a threshold voltage value or less. The station controls the unmanned aerial robot such that the unmanned aerial robot performs a specific operation to lower the voltage to a predetermined voltage or less when the voltage is higher than a specific level. The specific level is the specific level is one of a plurality of levels classified according to whether or not the voltage is lowered to the predetermined voltage or less through the specific operation within a first specific time and the specific operation is changed according to each of the plurality of levels.
Abstract:
The present invention relates to: a vehicle capable of providing a wireless vehicle communication (V2X) service by using a mobile terminal without comprising a wireless communication module; a control method therefor; and a mobile terminal for the same. A method by which a mobile terminal provides V2X, related to one embodiment of the present invention, can comprise the steps of: acquiring, by the mobile terminal, vehicle information from a vehicle through near-field communication (NFC); and relaying V2X data between individuals outside of the vehicle by using a mobile communication module on the basis of the acquired vehicle information.
Abstract:
A wireless power transmitter is disclosed. The wireless power transmitter, which is capable of charging a plurality of wireless power receivers, includes: a plurality of coil cells; a main half-bridge inverter to which a main pulse signal is applied; a plurality of sub half-bridge inverters to which a first sub pulse signal or second sub pulse signal is applied; a current sensor that monitors the current through the coil cells; and a communications and control unit that controls the pulse signals applied to the main half-bridge inverter and sub half-bridge inverters and that communicates with the wireless power receivers, wherein the sub half-bridge inverters may be respectively connected to the coil cells.
Abstract:
The present invention relates to a wireless power transmission method, a wireless power transmission apparatus, and a wireless charging system in a wireless power transmission field, and the wireless power transmission method may include receiving first information of a first wireless power receiver and second information of a second wireless power receiver that receive power in a wireless manner within a first slot among a plurality of slots, transmitting a NAK (not-acknowledge) signal to the first and the second wireless power receiver and executing a collision resolution mechanism in the first and the second wireless power receiver.
Abstract:
The present disclosure relates to a wireless power transfer method, a wireless power transmitter and a wireless charging system in a wireless power transfer field. That is, a wireless power transmitter configured transfer power to a wireless power receiver in a wireless manner, the transmitter configured to a first coil configured to convert a current into a magnetic flux, a second coil configured to be adjacent to the first coil on a plane, a third coil configured to have a different shape from the first and second coils and have at least part thereof which overlaps the first and second coils, respectively, and a controller configured to determine a coil to be activated among the first, second and third coils.