Abstract:
A system and method for scanning for an object within a region using a conformal scanning scheme. The system may comprise a computer which includes a CPU and a memory medium which is operable to store one or more programs executable by the CPU to perform the method. The method may: 1) determine the characteristic geometry of the region; 2) generate a conformal scanning curve based on the characteristic geometry of the region by performing a conformal mapping between the characteristic geometry and a first scanning curve to generate the conformal scanning curve, i.e., mapping points of the first scanning curve to the characteristic geometry of the region; and 3) scan the region using the conformal scanning curve. These measurements of the region produce data indicative of one or more characteristics of the object. The method may also generate output indicating the one or more characteristics of the object.
Abstract:
A signal analysis system/method, for identifying the closest vector in a vector collection to a given input signal vector, comprising an input, a memory, and a processing unit. The memory stores a collection of vectors, and a table of mutual distances between pairs of the vectors in the collection. The processing unit may receive an input vector corresponding to the input signal. The processing unit may be further configured to: (a) select a vector from a current collection; (b) compute the distance of the input vector to the selected vector; (c) determine if the computed distance is smaller than a bounding radius value; (d) perform an annular filtration in response to the computed distance not being smaller than the bounding radius value, wherein the annular filtration retains in the current collection only those vectors whose tabulated distances from the selected vector are greater than the computed distance minus a radius value, and less than the computed distance plus the radius value; and to iteratively perform (a), (b), (c) and (d) until the computed distance to the selected point is smaller than the radius value, whereupon, the processor may identify the selected vector as the solution vector (i.e. the closest vector of the vector collection to the input vector), and may provide an output indication to a user in response this identification.
Abstract:
A system and method for improved image characterization, object placement, and mesh design utilizing Low Discrepancy sequences. The Low Discrepancy sequence is designed to produce sample points which maximally avoid one another, i.e., the distance between any two sample points is maximized. The invention may be applied specifically to methods of image characterization, pattern matching, acquiring image statistics, object location, image reconstruction, motion estimation, object placement, sensor placement, and mesh design, among others. Image characterization is performed by receiving an image and then sampling the image using a Low Discrepancy sequence, also referred to as a quasi-random sequence, to determine a plurality of sample pixels in the image which characterize the image. Sensor placement is performed by generating a Low Discrepancy sequence for the desired placement application, and then selecting locations for the optimal placement of sensors using the generated Low Discrepancy sequence.
Abstract:
Performing sequencing of a polynucleotide. A first image of microparticles that are distributed in a random fashion on a substrate may be received. Each of the microparticles may include a plurality of similar oligonucleotides of the polynucleotide. A second image of the microparticles may be received. A plurality of first subportions of the first image may be determined. Each subportion may include a respective plurality of microparticles distributed in a random fashion. The second image may be analyzed to identify a plurality of second subportions in the second image. Each of the plurality of second subportions may correspond to a respective one of the plurality of first subportions. A plurality of the microparticles may be matched from the first and second images based on said analyzing. At least a portion of the sequence of nucleotides of the polynucleotide may be determined based on said matching.
Abstract:
System and method for programmatically generating a second graphical program associated with a second programming development environment based on a first graphical program associated with a first programming development environment. The second graphical program may be generated programmatically, without relying on user input, or may prompt for user input to determine various options to use in generating the second graphical program. The second graphical program may implement the functionality of, or a portion of the functionality of, the first graphical program. The method preferably generates the second graphical program such that the second programming development environment is operable to treat the second graphical program identically to a graphical program interactively developed by a user using the second programming development environment. Thus, once the second graphical program has been generated, the user may use the second programming development environment to edit the second graphical program, execute the second graphical program, etc.
Abstract:
System and method for programmatically generating a second graphical program associated with a second programming development environment based on a first graphical program associated with a first programming development environment. The second graphical program may be generated programmatically, without relying on user input, or may prompt for user input to determine various options to use in generating the second graphical program. The second graphical program may implement the functionality of, or a portion of the functionality of, the first graphical program. The method preferably generates the second graphical program such that the second programming development environment is operable to treat the second graphical program identically to a graphical program interactively developed by a user using the second programming development environment. Thus, once the second graphical program has been generated, the user may use the second programming development environment to edit the second graphical program, execute the second graphical program, etc.
Abstract:
Automatic conversion of textual program code to graphical program code is performed. The method automatically translates the given functionality of a textual program code into executable graphical program code, corresponding to the same functionality. The method includes a parsing routine that generates a syntax tree and code generation routines, which create graphical program code from the syntax tree.
Abstract:
System and method for controlling/analyzing a process by solving a system of linear equations in real-time. Linear equations that model the process are stored. In an off-line stage a partitioning strategy is determined based on the linear equations, including determining groups of values for recursively partitioning a set of values measured and/or computed from the process. In an on-line stage: current process data are received from the process, including measurements from the process, and composing a set of values; the linear equations are recursively solved for a first group of the set, where the first group partitions the set into respective subsets of values, and where the recursively solving produces solved values for respective first groups of the set/subset of values; the linear equations are solved for remaining unsolved values in the set, thereby producing solved values for the set, which are stored and are useable to control/analyze the process.
Abstract:
A device for removing harmful constituents from exhaust gases of internal combustion engines comprises a first housing for conducting exhaust gases, the first housing containing a front, middle, and rear area with at least one intake in the front area and at least one outlet in the rear area. A first structure containing a plurality of contiguous cavities covers the cross-section of the first housing at least partially. The following are disposed in the housing in any sequence: a second structure which contains and/or is coated with a first metal oxide; a third structure which contains and/or is coated with a catalyst for converting or degrading contaminants; and a fourth structure which contains and/or is coated with a second metal oxide. The first housing contains or is at least partially made of or coated with porous aluminum oxide, mullite, cordierite, silicon nitride, tialite, steatite, zircon, zircon dioxide and/or silicon carbide.
Abstract:
System and method for programmatically generating a second graphical program associated with a second programming development environment based on a first graphical program associated with a first programming development environment. The second graphical program may be generated programmatically, without relying on user input, or may prompt for user input to determine various options to use in generating the second graphical program. The second graphical program may implement the functionality of, or a portion of the functionality of, the first graphical program. The method preferably generates the second graphical program such that the second programming development environment is operable to treat the second graphical program identically to a graphical program interactively developed by a user using the second programming development environment. Thus, once the second graphical program has been generated, the user may use the second programming development environment to edit the second graphical program, execute the second graphical program, etc.