Eyepiece providing color separation in planar waveguides using dichroic filters

    公开(公告)号:US10551568B2

    公开(公告)日:2020-02-04

    申请号:US16445115

    申请日:2019-06-18

    Abstract: An eyepiece for projecting an image to an eye of a viewer includes a first planar waveguide positioned in a first lateral plane, a second planar waveguide positioned in a second lateral plane adjacent the first lateral plane, and a third planar waveguide positioned in a third lateral plane adjacent the second lateral plane. The first waveguide includes a first diffractive optical element (DOE) coupled thereto and disposed at a lateral position. The second waveguide includes a second DOE coupled thereto and disposed at the lateral position. The third waveguide includes a third DOE coupled thereto and disposed at the lateral position. The eyepiece further includes a first optical filter disposed between the first waveguide and the second waveguide at the lateral position, and a second optical filter positioned between the second waveguide and the third waveguide at the lateral position.

    VISUAL TRACKING OF PERIPHERAL DEVICES
    43.
    发明申请

    公开(公告)号:US20200026348A1

    公开(公告)日:2020-01-23

    申请号:US16588830

    申请日:2019-09-30

    Abstract: Techniques are disclosed for performing localization of a handheld device with respect to a wearable device. At least one sensor mounted to the handheld device, such as an inertial measurement unit (IMU), may obtain handheld data indicative of movement of the handheld device with respect to the world. An imaging device mounted to either the handheld device or the wearable device may capture a fiducial image containing a number of fiducials affixed to the other device. The number of fiducials contained in the image are determined. Based on the number of fiducials, at least one of a position and an orientation of the handheld device with respect to the wearable device are updated based on the image and the handheld data in accordance with a first operating state, a second operating state, or a third operating state.

    Beam angle sensor in virtual/augmented reality system

    公开(公告)号:US10520737B2

    公开(公告)日:2019-12-31

    申请号:US16437229

    申请日:2019-06-11

    Abstract: A virtual image generation system for use by an end user comprises a projection subsystem configured for generating a collimated light beam, and a display configured emitting light rays in response to the collimated light beam to display a pixel of an image frame to the end user. The pixel has a location encoded with angles of the emitted light rays. The virtual image generation system further comprises a sensing assembly configured for sensing at least one parameter indicative of at least one of the emitted light ray angles, and a control subsystem configured for generating image data defining a location of the pixel, and controlling an angle of the light beam relative to the display based on the defined location of the pixel and the sensed parameter(s).

    SYSTEMS AND METHODS FOR OPERATING A DISPLAY SYSTEM BASED ON USER PERCEPTIBILITY

    公开(公告)号:US20190324276A1

    公开(公告)日:2019-10-24

    申请号:US16389529

    申请日:2019-04-19

    Abstract: Systems and methods are disclosed for operating a head-mounted display system based on user perceptibility. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes by presenting the content with different amounts of wavefront divergence. Some embodiments include obtaining an image captured by an imaging device of the display system. Whether a threshold measure or more of motion blur is determined to be exhibited in one or more regions of the image. Based on a determination that the threshold measure or more of motion blur is exhibited in one or more regions of the image, one or more operating parameters of the wearable display are adjusted. Example operating parameter adjustments comprise adjusting the depth plane on which content is presented (e.g., by switching from a first depth plane to a second depth plane), adjusting a rendering quality, and adjusting power characteristics of the system.

    DEPTH BASED FOVEATED RENDERING FOR DISPLAY SYSTEMS

    公开(公告)号:US20190287495A1

    公开(公告)日:2019-09-19

    申请号:US16355603

    申请日:2019-03-15

    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include determining a fixation point of a user's eyes. Location information associated with a first virtual object to be presented to the user via a display device is obtained. A resolution-modifying parameter of the first virtual object is obtained. A particular resolution at which to render the first virtual object is identified based on the location information and the resolution-modifying parameter of the first virtual object. The particular resolution is based on a resolution distribution specifying resolutions for corresponding distances from the fixation point. The first virtual object rendered at the identified resolution is presented to the user via the display system.

    Beam angle sensor in virtual/augmented reality system

    公开(公告)号:US10042166B2

    公开(公告)日:2018-08-07

    申请号:US15405146

    申请日:2017-01-12

    Abstract: A virtual image generation system for use by an end user comprises a projection subsystem configured for generating a collimated light beam, and a display configured emitting light rays in response to the collimated light beam to display a pixel of an image frame to the end user. The pixel has a location encoded with angles of the emitted light rays. The virtual image generation system further comprises a sensing assembly configured for sensing at least one parameter indicative of at least one of the emitted light ray angles, and a control subsystem configured for generating image data defining a location of the pixel, and controlling an angle of the light beam relative to the display based on the defined location of the pixel and the sensed parameter(s).

Patent Agency Ranking