Abstract:
An apparatus and method for adaptive broadcast transmission. A broadcast transmission can be received. Insufficiency of a broadcast channel quality can be determined. A negative acknowledgement signal can be sent on a common uplink channel in response to determining the broadcast channel quality is insufficient. The negative acknowledgement signal can be received on the common uplink channel at another location, the negative acknowledgement signal indicating broadcast channel quality is insufficient. The broadcast channel quality can be adjusted in response to receiving the negative acknowledgement signal.
Abstract:
A method for operating a user equipment (UE) in a UE group including at least two UEs includes receiving, from a communications controller, network resources information about an allocation of a first set of network resources to the UE group and a transmission indication, where the transmission indication indicates that the UE is selected to transmit in a second set of network resources that is a subset of the first set of network resources. The method further includes transmitting, to other UEs in the UE group utilizing a direct mobile communications (DMC) link associated with the communications controller, a first message including a control indicator in a first subset of the second set of network resources, the control indicator indicating scheduling information for a second subset of the second set of network resources.
Abstract:
An embodiment method for operating a device in receiving a transmission over a plurality of communications links includes assigning an allocatable receiver resource to each communications link in the plurality of communications links according to a measure derived from communications link characteristics of each respective communications link and combined communications link characteristics of the plurality of communications links, and receiving the transmission over the plurality of communications links with the assigned allocatable receiver resource.
Abstract:
A method for transmitting resource allocation information to a wireless node in a communications system includes selecting a search space from one of a first search space and a second search space, the first search space associated with a first set of control channel parameters and the second search space associated with a second set of control channel parameters. The method also includes modulating the first control information, and mapping the modulated first control information onto the selected search space in a first subframe, where at least one of modulating the first control information and mapping the modulated first control information is according to a selected set of control channel parameters associated with the selected search space. The method further includes transmitting the first subframe to the wireless node, and transmitting a first parameter indicator identifying the selected set of control channel parameters to the wireless node.
Abstract:
A communications system and a method for performing communications are provided. User Equipments (UEs) are provided with UE-specific configuration information, such as CSI-RS (Channel Status Indication-Reference Signal) patterns, antenna port groupings, reference signal configurations, subframe configurations, and/or scrambling codes. The UEs process the received reference signals in accordance with the received configuration information and feedback measurement information for, e.g., PMI/CQI/RI (Precoding Matrix Indicator/Channel Quality Indicator/Rank Indicator of the precoding matrix) and/or the RLM/RRM (Radio Link Monitor/Radio Resource Management).
Abstract:
A system and method for relaying transmissions in wireless communications is provided. A method for combined relay node operation includes determining an operating mode of the combined relay node, where the combined relay node includes a repeater and a relay. The method also includes if the operating mode is repeater on mode, amplifying and forwarding received signals, and storing subframes, where subframes are demodulated and decoded versions of the received signals. The method further includes if the operating mode is repeater off mode, amplifying and forwarding a control zone of signals received while the operating mode is repeater off mode, and transmitting subframes stored while the operating mode is repeater on mode.
Abstract:
A system and method for transmitting control information are provided. A method for communications controller operations includes combining control data for each relay node of at least one relay node into a control channel data stream, mapping a plurality of transmission resources for the control channel data stream into a plurality of physical resource blocks using a distributed virtual resource mapping rule, and transmitting the plurality of physical resource blocks to the set of at least one relay node. The plurality of transmission resources are mapped to physical resource blocks that are non-contiguous in a frequency domain.
Abstract:
A resource allocation method, a network device and a wireless system are disclosed. The method includes: sorting Resource Blocks (RBs) used by a terminal of a first system and a terminal of a second system according to a use situation of the RBs used by the terminal of the first system and the terminal of the second system; and allocating the sorted RBs. When some RBs are available to a Long Term Evolution (LTE) terminal, coexistence of an LTE-Advanced (LTE-A) terminal and the LTE terminal is enabled, and compatibility between the LTE-A terminal and the LTE terminal is ensured.
Abstract:
A structured parity-check matrix H is proposed, wherein H is an expansion of a base matrix Hb and wherein Hb comprises a section Hb1 and a section Hb2, and wherein Hb2 comprises a first part comprising a column hb having an odd weight greater than 2, and a second part comprising matrix elements for row i, column j equal to 1 for i=j, 1 for i=j+1, and 0 elsewhere. The expansion of the base matrix Hb uses identical submatrices for 1s in each column of the second part H′b2, and the expansion uses paired submatrices for an even number of 1s in hb.
Abstract translation:提出了一种结构化奇偶校验矩阵H,其中H是基本矩阵H B b的扩展,并且其中H B b包括部分H b1 并且其中H b2包括具有奇数重量大于2的柱h B 1的第一部分,以及 第二部分包括用于行i的矩阵元素,列j对于i = j等于1,对于i = j + 1为1,在其他地方为0。 基本矩阵H B b的扩展在第二部分H'b2“的每列中使用相同的子矩阵1s,并且扩展使用成对的子矩阵用于偶数1s 在h / b>中。
Abstract:
A method and apparatus is provided for transmitting an orthogonal frequency domain multiple access (OFDMA) signal including a synchronization channel signal transmitted within a localized portion of a bandwidth of the OFDMA signal (818), the synchronization channel signal having predetermined time domain symmetry within the localized portion of the bandwidth (816). The synchronization channel signal enables an initial acquisition and cell search method with low computational load which provides OFDMA symbol timing detection and frequency error detection by differential processing of sequence elements of the synchronization channel signal (1112) and frame boundary detection and cell specific information detection (1114) in an OFDMA system supporting multiple system bandwidths, both synchronized and un-synchronized systems, a large cell index and an OFDMA symbol structure with both short and long cyclic prefix length.