Abstract:
System for storage of electricity in the form of thermal energy, and release of thermal energy during times of demand. The system includes a unit for containing at least one electrically conducting phase change material and electrical circuitry for driving electrical current through the phase change material to heat the phase change material into a molten state, or at least one electrical heater used to convert electricity into heat stored in the phase change material. Structure is provided for transferring heat in the phase change material to a working fluid such as steam or gas for electricity generation in a steam turbine or gas turbine, capable of generating supercritical fluids. Structure is also provided for transferring heat in the phase change material to a thermal energy to electrical energy conversion device. A suitable phase change material is elemental silicon or an aluminum-silicon alloy.
Abstract:
A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 μm to 15 μm. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
Abstract:
A localized heating structure includes a spectrally-selective solar absorber, that absorbs incident solar radiation and reflects at wavelengths longer than 2 μm, with an underlying heat-spreading layer having a thermal conductivity equal to or greater than 50 W/(mK), a thermally insulating layer, adjacent to the spectrally-selective solar absorber, having a thermal conductivity of less than 0.1 W/(mK), one or more evaporation openings through the spectrally-selective solar absorber and the thermally insulating layer, and an evaporation wick, disposed in one or more of the evaporation openings in the thermally insulating layer, that contacts liquid and allows the liquid to be transported from a location beneath the thermally insulating layer through to the spectrally-selective solar absorber in order to generate vapor from the liquid. The thermally insulating layer is configured to have a density less than the liquid so that the localized heating structure is able to float on the liquid.
Abstract:
Silica aerogels with improved properties are disclosed together with methods for synthesizing such aerogels. The improved properties include lower thermal conductivity (better insulating capacity), lower acoustic velocity, lower dielectric constant and improved ductility. Greater tunability of the refractive index can also be achieved. The silica aerogels are prepared by a sol-gel processing method that provides better control of the formation or aerogel structures. Generally speaking, the improvements arise from control of the synthesis to create a morphology of primary clusters and diverse-sized secondary clusters of dense silica aerogels separated by less densely packed regions. By providing a broader range of secondary clusters and/or pore sizes and loose connectivity between clusters, reductions can be achieved in thermal conductivity and flexural modulus.
Abstract:
A spectrally selective solar absorber is described and comprises a substrate, double cermet layers comprising multi-metal nanoparticles embedded in a dielectrics matrix, and double antireflection layers deposited on cermet layers. The tungsten or titanium or tantalum infrared reflector layer suppressing the diffusion of substrate elements and multi-metal nanoparticles in the cermet are disclosed.
Abstract:
Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer “second layer” disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 μΩ·cm2 .
Abstract:
A localized heating structure includes a spectrally-selective solar absorber, that absorbs incident solar radiation and reflects at wavelengths longer than 2 μm, with an underlying heat-spreading layer having a thermal conductivity equal to or greater than 50 W/(mK), a thermally insulating layer, adjacent to the spectrally-selective solar absorber, having a thermal conductivity of less than 0.1 W/(mK), one or more evaporation openings through the spectrally-selective solar absorber and the thermally insulating layer, and an evaporation wick, disposed in one or more of the evaporation openings in the thermally insulating layer, that contacts liquid and allows the liquid to be transported from a location beneath the thermally insulating layer through to the spectrally-selective solar absorber in order to generate vapor from the liquid. The thermally insulating layer is configured to have a density less than the liquid so that the localized heating structure is able to float on the liquid.
Abstract:
A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.
Abstract translation:用于太阳能系统的局部加热结构及其形成方法包括具有互连孔,密度小于约3000kg / m 3的绝热层和亲水表面,以及与热 绝缘层。 膨胀碳结构具有大于约80%的孔隙率和亲水表面。
Abstract:
Thermoelectric materials with high figures of merit, ZT values, are disclosed. In many instances, such materials include nano-sized domains (e.g., nanocrystalline), which are hypothesized to help increase the ZT value of the material (e.g., by increasing phonon scattering due to interfaces at grain boundaries or grain/inclusion boundaries). The ZT value of such materials can be greater than about 1, 1.2, 1.4, 1.5, 1.8, 2 and even higher. Such materials can be manufactured from a thermoelectric starting material by generating nanoparticles therefrom, or mechanically alloyed nanoparticles from elements which can be subsequently consolidated (e.g., via direct current induced hot press) into a new bulk material. Non-limiting examples of starting materials include bismuth, lead, and/or silicon-based materials, which can be alloyed, elemental, and/or doped. Various compositions and methods relating to aspects of nanostructured theromoelectric materials (e.g., modulation doping) are further disclosed.