Abstract:
An apparatus to facilitate volume control for route aural guidance. When supplying a guidance voice to a loudspeaker 34a, a voice control section 30 disconnects the loudspeaker 34a from audio and outputs the guidance voice through the loudspeaker. A volume control screen is displayed on a display section 28 where the user adjusts the volume by touching the screen. When the voice control section 30 switches a signal to the loudspeaker 34a, a mute circuit 40a is operated to mute the voice output before the voice is output through the loudspeaker 34a. When the user terminates volume adjustment, the voice control section 30 outputs a voice for volume confirmation or check at the adjusted volume through the loudspeaker 34a. The user can check the adjusted volume at this time.
Abstract:
In a navigation apparatus for setting a route from a designated departure point to a destination and providing guidance along the route, there are provided, as map data used in route exploration, node data [FIG. 15(b)] comprising position information and information relating to the attributes thereof, intersection data [FIGS. 2-5(b), FIG. 15(b)] comprising information relating to intersections, and road data [FIGS. 2-5(a), FIG. 15(c)] comprising information related to roads. Information such as roads between intersections and intersections which are the starting and end points of roads are obtained from the intersection data and road data, and an optimum route is retrieved by comparing routes. The map data is put into the form of a layered structure, as shown in FIG. 1, a branch road network is developed in an upper-layer (2) connected to a trunk road network with respect to a higher-order layer (1) of the trunk road network, block division is performed, and exploration from a lower-order layer to intersections connected to a road network of the higher-order layer is successively repeated. The foregoing makes it possible to perform processing upon limiting the range of exploration, and to raise the speed of exploration processing. In addition, the work area needed for exploration can be reduced and storage data can be conserved.
Abstract:
A map updating system includes: an update processing unit for performing update processing by reading data required in the update processing from a cache area of a memory when the data are stored in the cache area and from a map database when the data are not stored in the cache area; a cache storage unit for storing the data read by the update processing unit in the cache area; a processing memory capacity determination unit for determining a processing memory capacity, which is a capacity of the memory required as an update processing area, on the basis of the content of map data to be subjected to the update processing; and a cache capacity determination unit for determining a cache capacity, which is a capacity of the memory allocated to the cache area, on the basis of the processing memory capacity.
Abstract:
A road map display device including a road map information memory for memorizing road map data on a two-dimensional coordinate and a detection device for detecting a present position and a travel direction of an automotive vehicle, wherein the two-dimensional coordinate of the road map data is read out from the information memory in accordance with the present position and travel direction of the vehicle detected by the detection device and displayed in the form of a plane view on a screen of a display unit. In the road map display device, trapezoid conversion parameters are determined on a basis of a conversion formula for converting the two-dimensional coordinate of the road map to a trapezoid coordinate for display of a perspective view in such a manner that an upper side of a square two-dimensional coordinate is contracted relatively to a lower side of the two-dimensional coordinate, and the road map data included in a reverse trapezoid coordinate defined by a reverse conversion formula of the conversion formula are read out from the road map information memory and introduced into a trapezoid coordinate defined by the trapezoid conversion parameters such that the road map data are displayed in the form of a perspective view on the screen of the display unit.
Abstract:
A road map display device including a road map information memory for memorizing road map data on a two-dimensional coordinate and a detection device for detecting a present position and a travel direction of an automotive vehicle, wherein the two-dimensional coordinate of the road map data is read out from the information memory in accordance with the present position and travel direction of the vehicle detected by the detection device and displayed in the form of a plane view on a screen of a display unit. In the road map display device, trapezoid conversion parameters are determined on a basis of a conversion formula for converting the two-dimensional coordinate of the road map to a trapezoid coordinate for display of a perspective view in such a manner that an upper side of a square two-dimensional coordinate is contracted relatively to a lower side of the two-dimensional coordinate, and the road map data included in a reverse trapezoid coordinate defined by a reverse conversion formula of the conversion formula are read out from the road map information memory and introduced into a trapezoid coordinate defined by the trapezoid conversion parameters such that the road map data are displayed in the form of a perspective view on the screen of the display unit.
Abstract:
Even when the present position does not exist on a guide road after deviation from an established guide route, a guide road is identified and a more advantageous route is identified. Furthermore, only a minimum amount of required data are displayed on the map picture. The searching again is executed by taking the direction of progress of the car into consideration. Street names of the roads are displayed on the guide map, enabling a guide route to be easily recognized. A particular area is specified by a postal code number or by a telephone number, and the streets or the facilities in the specified area are displayed. This makes it easier to search the destination.
Abstract:
An external storage device having navigation data and programs stored therein to perform a route search and provide route guidance, and a central processing unit which includes a program storage flash memory and program loading means for loading programs from the external storage device into the flash memory. The programs stored in the flash memory are run to perform a route search and provide route guidance. The central processing unit compares a version of each program stored in flash memory with a version of the program stored in external storage device, so that when the version of the program stored in the external storage device is more current than that stored in the flash memory, the program is loaded from the external storage device into the flash memory.
Abstract:
In a navigation apparatus for a vehicle, after the present position of a vehicle is obtained, a position on a map which corresponds to the present position of the vehicle is obtained. Subsequently, the heading direction of the vehicle is detected. When the vehicle is traveling on the left-hand lane, coordinate conversion is performed such that a present position mark is shifted leftward from the center of the road by 1/4 of the road width. This makes it possible to display a route while preventing the route from overlapping with the centerline of the road. In another navigation apparatus for a vehicle, a structure-profiled map on which a structure-representing shape and a road are drawn is displayed so as to provide road guidance, wherein a route is displayed on the structure-profiled map along a road which is displayed for guidance. The display of the route is performed such that the route is shifted from the center line of a road toward a lane on which the vehicle is traveling. The route is displayed by using a pattern having a width corresponding to the width of the road in accordance with the lane of the road to be guided.
Abstract:
Road or other guidance is provided by displaying a structure-shape map showing building shapes and roads. Drawing of building shapes on the map is restricted according to a specific condition, e.g. the travel condition of the vehicle, or the screen scroll mode, by setting the display color for building shapes to the same color as that for a background, or by not drawing any of them, thereby preventing the screen from becoming difficult to see even during scrolling. For the structure-shape map, a storage device (3) stores map data having a name and a coordinate string for each shape of various structures and information belonging to each structure. A guidance controller (4) decides colors, color densities, patterns thereof, etc. for shapes as display modes on the basis of information belonging to the structures, e.g. the classification and height of each structure, and other detailed information (e.g. scale of construction), retrieves information belonging to a structure concerned, together with information regarding surroundings, and displays, on a display (12), shapes and names according to the decided display modes, thereby giving guidance. The structure-shape map may be displayed centered on a structure having a telephone number retrieved by entry of the telephone number.
Abstract:
In order to calculate the traveling distance and heading of a vehicle in highly accurate fashion, a navigation system is provided with a distance sensor for outputting pulses in proportion to rotation of a wheel, a GPS receiving unit for calculating vehicle speed by GPS reception, acquisition unit for acquiring the number of pulses at the same time as GPS reception, distance correction coefficient calculating unit for calculating GPS traveling distance from the GPS-reception vehicle speed and a time difference between any two points, and calculating a distance correction coefficient from the GPS traveling distance and a pulse difference between two points, and present position calculating unit for calculating present position based upon a corrected distance correction coefficient.