Abstract:
A surgical apparatus is configured to support at least one bone cut for installation of a prosthetic component. The installed prosthetic component will have reduced alignment error. The surgical apparatus is configured to distract a first compartment to a first predetermined load value while allowing a moving support structure to pivot freely. A distraction lock mechanism is then engaged to prevent movement of a distraction mechanism that raises or lowers the moving support structure relative to a fixed support structure. The moving support structure has M-L tilt angle that is measured. A M-L tilt mechanism is engaged to forcibly equalize the first and second compartments. Engaging the M-L tilt mechanism prevents the moving support structure from freely pivoting. The at least one bone cut relates to the first and second compartments equalized and the M-L tilt angle.
Abstract:
A measurement system for installation of a prosthetic component. The measurement system comprises a housing, a slide block, a medial plate, a lateral plate, a fixed plate, and a threaded shaft. The fixed plate couples to the housing. The threaded shaft couples to the slide block. The threaded shaft is rotated to move the slide block within the housing. The slide block includes a free wheel gear. A medial plate and a lateral plate respectively couple to a medial post and a lateral post. The medial post and lateral post each have gear teeth that is configured to couple the free wheel gear. The housing retains, aligns and supports movement of the medial and lateral post parallel to the slide block. A medial brake and a lateral brake is configured to couple to the medial post and the lateral post to prevent movement under user control.
Abstract:
A system is disclosed herein for providing a kinetic assessment and preparation of a prosthetic joint comprising one or more prosthetic components. The system comprises a prosthetic component including sensors and circuitry configured to measure load, position of load, and joint alignment. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. The kinetic assessment measures joint alignment under loading that will be similar to that of a final joint installation. The kinetic assessment can use trial or permanent prosthetic components. Furthermore, adjustments can be made to the applied load magnitude, position of load, and joint alignment by various means to fine-tune an installation. The kinetic assessment increases both performance and reliability of the installed joint by reducing error that is introduced by elements that load or modify the joint dynamics not taken into account by prior assessment methods.
Abstract:
A system and method is disclosed herein for measuring bone slope or tilt of a prepared bone surface of the muscular-skeletal system. The system comprises a three-axis accelerometer for measuring position, rotation, and tilt. In one embodiment, the three-axis accelerometer can be housed in a prosthetic component that couples to a prepared bone surface. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from one or more sensors. A bone is placed in extension. The three-axis accelerometer is referenced to a bone landmark of the bone when the bone is in extension. The three-axis accelerometer is then coupled to the prepared bone surface with the bone in extension. The slope or tilt of the bone surface is measured. In the example, the slope or tilt of the bone surface corresponds to at least one surface of the prosthetic component attached thereto.
Abstract:
A system and method for is provided for operation of an orthopedic system. The system includes a load sensor for converting an applied pressure associated with a force load on an anatomical joint, and an inertial sensing device configured to measure alignment. The inertial sensing device provides alignment measurement data to measure alignment. An ultrasonic transducer, MEMs microphone, electromagnets, optical elements, metallic objects or other transducers can be configured to convert or convey a physical movement to an electrical signal and support measurement of muscular-skeletal alignment. The load sensor can be used to measure load magnitude and position of load of an applied load by the muscular-skeletal system.
Abstract:
A graphical user interface having a portion of an orthopedic system displayed on an electronic display. Where the graphical user interface displays: a parameter of the orthopedic system; a portion of an orthopedic insert; and a parameter of the orthopedic insert. Where in response to detecting movement of the orthopedic system the displayed portion of the orthopedic system is moved, a change of the parameter of the orthopedic system is displayed, and a change in parameter of the orthopedic insert is displayed.
Abstract:
A bone cutting system is disclosed that supports one or more bone cuts that are aligned relative to a mechanical axis. The system comprises a first bone cutting jig, a second bone cutting jig, a sensored insert, a bone jig adapter shim, and a device having at least two reference surfaces. The sensored insert includes a three-axis accelerometer to measure position, rotation, and tilt and includes a plurality of sensors to measure a parameter of the muscular-skeletal system. The reference surface device can be an operating table having a first reference surface and a second reference surface that is perpendicular to the first reference surface for referencing the three-axis accelerometer. The bone jig adapter shim can include a tab that fits into a slot of the first or second bone cutting jigs. A remote system receives accelerometer data to calculate offset relative to a mechanical axis.
Abstract:
A method of providing feedback to a user of an orthopedic alignment system, which displays: a portion of an orthopedic system; a parameter of the orthopedic system; a portion of an orthopedic insert in the display; and a parameter of the orthopedic insert. Where the method detects movement of the orthopedic system, and moves the displayed portion of the orthopedic system in response to the movement of the orthopedic system. Where the method additionally detects changes of the parameter of the orthopedic insert and of the parameter of the orthopedic system during movement of the orthopedic system, and displays the changes of the parameter of the orthopedic insert and the parameter of the orthopedic system.
Abstract:
An alignment system for the muscular-skeletal system is disclosed. The system supports parameter measurement and alignment. The system comprises a sensored device, a reference position tool, and a remote system configured to receive and display sensor data. The sensored device includes a three-axis accelerometer configured to measure position, rotation, and slope. The reference position tool comprises a body, a first arm coupled to a proximal end of the body, and a second arms coupled to a proximal end of the body. The sensored device couples to the reference position tool. The first and second arms of the reference position tool couples to the muscular-skeletal system in predetermined locations to allow a position of the muscular-skeletal system to be referenced. The body of the reference position tool can extend and retract to adapt to different sized muscular-skeletal systems.
Abstract:
A system and method for adjusting a contact point of a joint is disclosed. The system comprises a prosthetic component having sensors therein and a remote system to receive and display sensor data. A plurality of sensors of the prosthetic component provide data related to load magnitude and position of load applied to a surface of the prosthetic component. The prosthetic component further includes one or sensors that provide position, rotation, and tilt data. Adjustment of the contact point of the prosthetic component can be performed by repositioning the prosthetic component relative to a bone to which it is coupled. For example, a prosthetic component can be pinned to the bone allowing rotation of the prosthetic component relative to the bone in-situ. A remote system receives sensor data from the prosthetic component allowing viewing of the load magnitude, position of load, and rotation of the prosthetic component.