摘要:
Techniques for centralized control of peer-to-peer (P2P) communication and centralized control of femto cell operation are described. For centralized control of P2P communication, a designated network entity (e.g., a base station) may control P2P communication of stations (e.g., UEs) located within its coverage area. The designated network entity may receive an indication of a first station (e.g., a UE) desiring to communicate with a second station (e.g., another UE). The designated network entity may determine whether or not to select peer-to-peer communication for the first and second stations, e.g., based on the quality of their communication link. The designated network entity may assign resources to the stations if peer-to-peer communication is selected. For centralized control of femto cell operation, the designated network entity may control the operation of femto cells (e.g., may activate or deactivate femto cells) within its coverage area.
摘要:
Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a base station may transmit data to a relay station in a portion of a subframe instead of the entire subframe. The relay station may transmit control information during part of the subframe. The base station may transmit data to the relay station during the remaining part of the subframe. In another aspect, a target termination for a packet may be selected based on data and/or ACK transmission opportunities available for the packet. One or more transmissions of the packet may be sent with HARQ, and ACK information may be sent for the packet. The packet may be transmitted such that it can be terminated prior to the first subframe (i) not available for sending the packet or (ii) available for sending ACK information.
摘要:
Systems and methodologies are described that facilitate indicating a dominant interferer to a target serving base station in a wireless communication environment. A mobile device can detect presence or absence of a dominant interferer. Further, an access probe that includes information related to the presence or absence of the dominant interferer can be generated. For example, the information can be included in a payload of the access probe as an explicit flag, an explicit indication of an interference level, a Channel Quality Indicator (CQI) value (e.g., reserved versus non-reserved, . . . ), etc. Moreover, the access probe can be transmitted to the target serving base station to initiate an access procedure. The target serving base station can select a time-frequency resource to be utilized for a responsive downlink transmission (e.g. access grant signal, subsequent access related message, . . . ) as a function of the information included in the access probe.
摘要:
Providing for management of wireless communications in a heterogeneous wireless access point (AP) environment is described herein. By way of example, system data of an over-the-air message can be configured to include information identifying a distinct type of transmitting base station. In some aspects, the information can include an access type of the base station and/or a sector ID for distinguishing the base station among large numbers of other base stations. According to other aspects, the information can include wireless channel resources designated for a particular type of base station, or blanked by the transmitting base station, to facilitate interference reduction on such resources. By employing aspects of wireless communication management disclosed herein, efficient and reliable communication can be affected in large heterogeneous AP networks.
摘要:
Techniques for supporting data transmission via a relay station are described. In an aspect, data transmission may be supported using ACK-and-suspend. A transmitter station sends a first transmission of a packet to a receiver station. The transmitter station receives no ACK information for the first transmission of the packet and suspends transmission of the packet. The transmitter station thereafter receives an indication to resume transmission of the packet and, in response, sends a second transmission of the packet. In another aspect, different ACK timeline may be used when applicable. The receiver station may send ACK information in a designated subframe if available for use or in a different subframe. In yet another aspect, ACK repetition may be used. The receiver may send ACK information in multiple subframes to facilitate reception of the ACK information when the transmitter station is unable to receive one or more of the multiple subframes.
摘要:
Methods and apparatuses are provided that include selecting resources for assigning to a device to mitigate relay self-interference when also communicating with a base station. The resources can be selected based on one or more factors, such as based on resources that are negotiated with the base station, or based on resources indicated as not desired for allocation from the base station, etc. In other examples, reference signals and control data can be communicated such as to mitigate relay self-interference as well.
摘要:
Positions of non-reference wireless transceivers to be added to a wireless communication network are determined as follows. Each non-reference wireless transceiver performs measurements of times of arrival (TOA) of signals transmitted by other non-reference wireless transceivers, as well as reference wireless transceivers. Thereafter, time difference of arrival (TDOA) values are computed from at least two types of pairs of measurements as follows: (a) unknown-unknown TDOA values are obtained as differences between TOA measurements of signals transmitted by non-reference wireless transceivers and (b) unknown-known TDOA values are obtained as differences between a TOA measurement of a signal transmitted by a non-reference wireless transceiver and another TOA measurement of another signal transmitted by a reference wireless transceiver. Both types of TDOA values are used to solve simultaneous equations to identify the positions of the non-reference wireless transceivers and optionally times of transmission of the signals by the non-reference wireless transceivers.
摘要:
Systems and methodologies are described that facilitate blanking on portions of bandwidth, such as a subset of interlaces, utilized by communicating devices that are dominantly interfered by a disparate device in wireless communications networks. The portions of bandwidth can relate to critical data, such as control data, and one or more of the communicating devices can request that the dominantly interfering device blank on one or more of the portions. The communicating devices can subsequently transmit data over the blanked portions free of the dominant interference. Additionally, the dominantly interfering device can request reciprocal blanking from the one or more communicating devices.
摘要:
Techniques for cross-subframe and cross-carrier scheduling of uplink and downlink transmissions in a multi-carrier wireless communication system are disclosed. A base station can include cross-subframe, carrier indication (xSF/CIF) information in a PDCCH message to signal to a user equipment (UE) which subframes and/or component carriers pertain to control information carried therein. The UE may utilize the xSF/CIF information to determine to which subframes and/or component carriers the control information is to be applied.
摘要:
Techniques for transmitting data in a relay communication network are described. In an aspect, stations in the relay network may be grouped into multiple depths, and stations at each depth may send the same transmission in each time interval. Packets may be transmitted in a pipelined manner in the relay network. Transmissions of a packet may be sent by stations at progressively higher depth in successive time intervals. A station may perform auto-configuration, attempt to decode transmissions from stations at different depths, and determine its depth based on decoding results. In another aspect, stations at each depth may transmit the same synchronization signal, and stations at different depths may transmit different synchronization signals. In one design, the synchronization signals for different depths may be different pilots, which may be generated with different scrambling codes or different orthogonal codes or may be multiplexed in frequency and/or time.