摘要:
Systems and methods are described for fabricating a varying-waveguide optical fiber. In one described method, a preform is fabricated having a core and at least one cladding region. The cladding region has a higher viscosity and the core region has a lower viscosity. The relative viscosities of the cladding region and core are chosen such that, when tension is applied to an optical fiber drawn from the preform, the applied tension is primarily borne by the cladding region thereby causing a viscoelastic strain to be frozen into the cladding region, while creating a minimal viscoelastic strain in the core. The method further includes drawing the preform into an optical fiber under an applied tension, such that a viscoelastic strain is frozen into the cladding region the frozen-in viscoelastic strain decreasing the cladding region refractive index. The cladding region refractive index is changed in a section of the optical fiber by heating the section so as to relax the viscoelastic strain frozen into the cladding region in the section of fiber, thereby increasing the cladding region refractive index in the section of fiber.
摘要:
The invention involves providing a microstructured fiber having a core region, a cladding region, and one or more axially oriented elements (e.g., capillary air holes) in the cladding region. A portion of the microstructured fiber is then treated, e.g., by heating and stretching the fiber, such that at least one feature of the fiber microstructure is modified along the propagation direction, e.g., the outer diameter of the fiber gets smaller, the axially oriented elements get smaller, or the axially oriented elements collapse. The treatment is selected to provide a resultant fiber length that exhibits particular properties, e.g., mode contraction leading to soliton generation, or mode expansion. Advantageously, the overall fiber length is designed to readily couple to a standard transmission fiber, i.e., the core sizes at the ends of the length are similar to a standard fiber, which allows efficient coupling of light into the microstructured fiber length.
摘要:
Our method of making high bandwidth silica-based multimode optical fiber comprises provision of a non-circular preform, and drawing fiber of chiral structure from the preform. The non-circular preform can be made by maintaining the inside of the tubular preform under reduced pressure during at least part of the collapse, resulting in a non-circular core and cladding. It can also be made by removal (e.g., by grinding or plasma etching) of appropriate portions of the preform, resulting in a circular core and non-circular cladding. In the latter case, fiber is drawn at a relatively high temperature such that, due to surface tension, the cladding assumes substantially circular shape and the core assumes a non-circular shape. The chiral structure is imposed on the fiber in any appropriate way, e.g., by twisting during fiber drawing the fiber alternately in clockwise and couterclockwise sense relative to the preform.
摘要:
The specification describes a process and apparatus for monitoring and controlling the ellipticity of preform tubes during Modified Chemical Vapor Deposition. In response to computer generated signals from the monitoring device, the tube collapse rate is adjusted dynamically by locally changing the temperature of the glass tube, or by changing the physical force acting to collapse the tube.
摘要:
Disclosed are non-periodic microstructured optical fibers that guide radiation by index guiding. By appropriate choice of core region and cladding region, the effective refractive index difference .DELTA. between core region and cladding can be made large, typically greater than 5% or even 10 or 20%. Such high .DELTA. results in small mode field diameter of the fundamental guided mode (typically
摘要:
A cladding pumped optical fiber laser comprises a length of optical fiber having a rare earth-doped region of diameter d.sub.RE >d.sub.01 where d.sub.01 is the mode diameter of the LP.sub.01 mode of the fiber at the laser radiation at wavelength .lambda.. In one embodiment the fiber has a core diameter d.sub.c selected such that the LP.sub.01 mode is the only guided spatial mode of the fiber, and d.sub.RE is greater than d.sub.c. In another embodiment the fiber supports at least one higher order guided spatial mode, typically LP.sub.11 or LP.sub.02, and d.sub.RE is approximately equal to or larger than d.sub.c. Currently preferred embodiments comprise a grating-defined laser cavity that comprises a mode-coupling refractive index grating. Cladding pumped lasers according to the invention will typically have efficient conversion of pump radiation to laser radiation, and consequently can typically be shorter than analogous prior art cladding pumped lasers.
摘要:
Applicants have determined that the temperature sensitivity of long-period grating devices is due to differential variation with temperature of the refractive indices of the core and cladding. They have further determined that the cladding profile and fiber composition can be redesigned to substantially reduce this differential variation, thereby reducing the temperature sensitivity of long-period gratings of less than 4 nm per 100.degree. C. and preferably less than 2 nm per 100.degree. C. This design permits the use of long-period grating devices without temperature control or compensation.