摘要:
Applicants have determined that the temperature sensitivity of long-period grating devices is due to differential variation with temperature of the refractive indices of the core and cladding. They have further determined that the cladding profile and fiber composition can be redesigned to substantially reduce this differential variation, thereby reducing the temperature sensitivity of long-period gratings of less than 4 nm per 100.degree. C. and preferably less than 2 nm per 100.degree. C. This design permits the use of long-period grating devices without temperature control or compensation.
摘要:
Disclosed are non-periodic microstructured optical fibers that guide radiation by index guiding. By appropriate choice of core region and cladding region, the effective refractive index difference .DELTA. between core region and cladding can be made large, typically greater than 5% or even 10 or 20%. Such high .DELTA. results in small mode field diameter of the fundamental guided mode (typically
摘要:
A cladding pumped optical fiber laser comprises a length of optical fiber having a rare earth-doped region of diameter d.sub.RE >d.sub.01 where d.sub.01 is the mode diameter of the LP.sub.01 mode of the fiber at the laser radiation at wavelength .lambda.. In one embodiment the fiber has a core diameter d.sub.c selected such that the LP.sub.01 mode is the only guided spatial mode of the fiber, and d.sub.RE is greater than d.sub.c. In another embodiment the fiber supports at least one higher order guided spatial mode, typically LP.sub.11 or LP.sub.02, and d.sub.RE is approximately equal to or larger than d.sub.c. Currently preferred embodiments comprise a grating-defined laser cavity that comprises a mode-coupling refractive index grating. Cladding pumped lasers according to the invention will typically have efficient conversion of pump radiation to laser radiation, and consequently can typically be shorter than analogous prior art cladding pumped lasers.
摘要:
An optical fiber amplifier is pumped by a fiber pump laser which has a pair of separate active media within a common resonator. The fiber gain section of the amplifier is also located within the resonator.
摘要:
In an optical fiber light source a section of multimode fiber is interposed between an energizing laser (e.g,, a diode laser) and a single mode fiber active medium. In a preferred embodiment the single mode fiber active medium is surrounded by a multimode cladding coupled to the multimode fiber. The source may serve as a pump laser for a fiber amplifier or as an amplified spontaneous emission source. Arrangements for coupling several energizing lasers to the active medium are also described.
摘要:
Described is a method of fabricating an optical fiber preform that includes a deep index trench comprising a shallower outer trench portion formed on a substrate tube and a deeper inner trench portion formed on the shallower outer trench portion. Each of the shallower outer trench and deeper inner trench portions comprises multiple silica layers. The method comprises the steps of: (1) forming each layer of the shallower outer trench portion in a single-pass deposition of a F-containing silica layer; and (2) forming each layer of the deeper inner portion in a double-pass deposition in which, in a first pass, a layer of silica soot is deposited and then, in a second pass, the soot is sintered in the presence of SiF4.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
Applicants have discovered an apparatus and method effective for use in rendering an optical fiber resistant to losses caused by high-radiation environments such as in outerspace. The apparatus comprises an optical fiber, a housing surrounding the optical fiber defining an enclosed space between the exterior surface of the fiber and the housing, and a concentration of deuterium or hydrogen gases disposed within the enclosed space.
摘要:
Our method of making high bandwidth silica-based multimode optical fiber comprises provision of a non-circular preform, and drawing fiber of chiral structure from the preform. The non-circular preform can be made by maintaining the inside of the tubular preform under reduced pressure during at least part of the collapse, resulting in a non-circular core and cladding. It can also be made by removal (e.g., by grinding or plasma etching) of appropriate portions of the preform, resulting in a circular core and non-circular cladding. In the latter case, fiber is drawn at a relatively high temperature such that, due to surface tension, the cladding assumes substantially circular shape and the core assumes a non-circular shape. The chiral structure is imposed on the fiber in any appropriate way, e.g., by twisting during fiber drawing the fiber alternately in clockwise and couterclockwise sense relative to the preform.