Abstract:
The invention discloses a method for purifying adipic acid by crystallization or recrystallization in at least one carbolyxic acid. More precisely, it discloses an improvement in adipic acid crystallization or recrystallization, characterised in that the said crystallization or recrystallization is effected in at least one carboxylic acid with a melting point below 20° C. The presence of carbon monoxide during crystallization or recrystallization can have a favourable effect on the adipic acid purity, in particular by reducing the content of metal catalyst traces of the adipic acid. The adipic acid purity can also be improved when the crystallization or recrystallization is effected in presence of a strong proton acid.
Abstract:
The invention concerns a method for regenerating a hydrogenation catalyst, and hydrogenation methods carried out with a catalyst comprising at least one regenerated catalyst. More particularly, it concerns a method for regenerating Raney catalysts used in total or partial hydrogenating processes of compounds comprising nitrile functions into amine functions. Said method consists in treating the spent catalyst with a basic solution and optionally in subjecting said catalyst to hydrogenation before stripping to eliminate the impurities present on the catalyst. Thus, the regenerating method enables to recuperate up to 100% of the catalytic activity.
Abstract:
The present invention relates to the treatment of lactams obtained directly from their synthesis process, avoiding the formation of oligomers as far as possible. The invention consists, more precisely, of a process for treating a lactam using the reaction flow obtained from a cyclizing hydrolysis of an aminonitrile, characterized in that the reaction flow leaving the hydrolysis reactor is cooled, over a period of less than or equal to 1 hour, to a temperature below or equal to 150.degree. C. before it is fractionated.
Abstract:
The device comprises an analog-digital converter coupled between a pulse receiver and a device to extract the continuous level of the signal given by the receiver. The continuous level extraction device is coupled to an edge detection device and to a scrambling characterizing device to detect the presence of rising or descending edges and of scramblers in the signal given by the receiver.
Abstract:
A new process for the production of APMMEA (aminopropylmethylethanolamine) is proposed. This process comprises at least 2 steps in which MEAPN (monomethylethanolaminopropionitrile) is first produced from MMEA (monomethylethanol amine) and ACN (acrylonitrile) and then said MEAPN is hydrogenated to obtain the corresponding amine, the APMMEA compound. APMMEA may be then eventually purified by several known process, notably by distillation.
Abstract:
A method for preparing lactams by cyclizing hydrolysis of a corresponding aminonitrile is described. A method for manufacturing a lactam by reacting an aminonitrile with water in the presence of a catalyst involving placing the water and the aminonitrile in contact in vapor phase, passing the mixture of vapors through a bed of catalyst arranged in at least one tube forming a reaction chamber and recovering the lactam at the outlet of the tube is also described.
Abstract:
The present disclosure is directed to a rotary wing rotor comprising one or more blades. Each blade has a torsion frequency around its span being substantially equal to a rotation frequency (Ω) of the rotor; torsion means twist to the rotation frequency of the rotor, in synchronization with said rotation; and comprising a material configured to dampen the torsion resonance, so as to avoid the resonance divergence.
Abstract:
Diester compounds are prepared from imide/dinitrile compounds employing a vapor-phase hydrolysis of dinitrile compounds in the presence of alcohol, more particularly from branched dinitrile compounds, such as methylglutaronitrile or branched dinitrile compounds obtained as by-products in a process for the production of adiponitrile by hydrocyanation of butadiene.
Abstract:
The present invention relates to a process for the manufacture of dinitrile compounds by double hydrocyanation of an olefin.It relates particularly to a process for the manufacture of dinitrile compounds by double hydrocyanation of an olefin present in a mixture of hydrocarbons, such as a petroleum fraction and more particularly still a petroleum fraction known under the name of C4 fraction.The process of the invention comprises a sequence of stages for the separation of the various compounds which makes it possible to remove the byproducts, such as the products from the trimerization of alkynes, present in the C4 fraction and thus to prevent their accumulation in the hydrocyanation reactors.
Abstract:
Hydrocarbon-based compounds containing at least one nitrile function are converted into compounds containing at least one carboxylic function, and into ester compounds from the carboxylic compounds thus obtained; such conversion entails reacting the nitrile compound with a hydroxyl basic compound in solution in a solvent at a temperature of between 80 and 150° C., in eliminating the ammonia formed, in reacting the salt obtained with a mineral acid, and then in recovering the compound containing at least one carboxylic function and, optionally, esterifying the acids obtained by reaction with an alcohol.