Abstract:
A continuous method (P) for preparing diamine is described. The method includes reacting the corresponding alkene nitrile with the corresponding monoamine in order to form the corresponding aminonitrile. The monoamine can be introduced in molecular excess with respect to the alkene nitrile, wherein the unreacted monoamine is recirculated to the reaction; followed by reducing the aminonitrile produced by hydrogen in the presence of at least one alkali-metal hydroxide, water, and a hydrogenation catalyst; and purifying the diamine.
Abstract:
Hexamethylenediamine and aminocapronitrile are simultaneoussly produced by hemihydrogenation of adiponitrile, which includes a stage of separation of the hexamethylenediamine from the hydrogenate by distillation of the hexamethylenediamine, the distillation of the hexamethylenediamine being carried out from the hydrogenate containing a free acid and/or an alkali metal or ammonium acid salt, whereby a top fraction A recovered at the column top of the stage of distillation of the hexamethylenediamine is essentially crude hexamethylenediamine and a small amount of THA; the amount of THA (tetrahydroazepine) present in the crude hexamethylenediamine constitutes a small proportion of the THA present in the hydrogenate.
Abstract:
Lactams, notably ε-caprolactam, are prepared from alkyl cyanovalerates, themselves obtained from unsaturated nitrile compounds, by contacting same, in gaseous state, with hydrogen in the presence of hydrogenation/cyclization catalysts, and then condensing the gas stream thus formed, without intermediate separation of any alkyl aminocaproate, and recovering lactam produced therefrom.
Abstract:
The present invention relates to a process for the manufacture and separation of dinitrile compounds.It relates more particularly to a process for the manufacture and separation of dinitrile compounds from a medium originating from the hydrocyanation of unsaturated mononitriles.The invention consists in feeding the medium comprising the dinitriles to a distillation column and then recovering the purified dinitriles as intermediate fraction, the heavy products being removed as column tail fraction and the light products, including the unsaturated mononitriles, being recovered as top fraction.
Abstract:
A process for the hydrogenation of compounds comprising nitrile or nitro functional groups to amine, aminonitrile or aminonitro compounds is provided. The process can be a continuous process conducted in the presence of a heterogeneous hydrogenation catalyst in divided form and a basic compound. The reaction can be conducted in a stirred reactor comprising an external loop for circulating the reaction mixture, allowing one portion of the hydrogenated products to be separated without withdrawing the catalyst, by using tangential filtration. The process may be especially useful in the hydrogenation of adiponitrile to an aminocapronitrile/hexamethylenediamine mixture.
Abstract:
A method and a plant are disclosed for purifying lactams, particularly lactams obtained by cyclizing hydrolysis of aminonitrile. The purification of ε-caprolactam obtained by cyclizing hydrolysis of aminocapronitrile is described which includes eliminating the ammonia from the reaction medium of the hydrolysis, then recovering the lactam from said medium in purified form. The recovery is carried out by performing at least a distillation of the lactam in the presence of a base producing optionally a fronts fraction comprising compounds more volatile than the lactam, a fraction comprising the lactam to be recovered to the degree of desired purity and a distillation tails comprising the lactam and compounds less volatile than the lactam. The distillation tails are treated by various processes such as evaporation in thin layers to recover the major part of the caprolactam and recycling the latter in the purification process.
Abstract:
The present invention relates to a process for the hydrogenation of nitrile functional groups to amine functional groups. It relates more particularly to a process for the complete or partial hydrogenation of dinitrile compounds to diamine or aminonitrile compounds. The invention relates to a process for the hydrogenation of nitrile functional groups to amine functional groups using hydrogen in the presence of a hydrogenation catalyst and of a strong inorganic base preferably deriving from an alkali metal or alkaline earth metal. According to the invention, the process comprises a stage of conditioning the catalyst which consists in mixing the hydrogenation catalyst, a predetermined amount of strong inorganic base and a solvent in which the strong inorganic base is not very soluble. This solvent is an amine compound, such as hexamethylenediamine in the case of the hydrogenation of adiponitrile to HMD and/or aminocapronitrile.
Abstract:
The present invention relates to the treatment of the reaction mixtures resulting from an oxidation reaction of cyclohexane to adipic acid and more particlarly to the separation of the various constituents of the said mixtures and to the purification of the adipic acid.
Abstract:
A process for the hemihydrogenation of aliphatic dinitriles to the corresponding aminonitriles using hydrogen in the presence of a catalyst, a strong inorganic base and water is disclosed. Using the disclosed process, a selectivity for the desired aminonitriles of at least 60% can be achieved.
Abstract:
Hydrocarbon compounds having at least one nitrile function are converted into compounds having at least one carboxylic function by hydrating the nitrile functions into amide functions by reaction with water in the presence of a strong inorganic acid, and then hydrolyzing the amide functions into carboxylic functions by reaction with water and a strong inorganic acid; the carboxylic compounds thus obtained can be esterified into diesters, advantageously diester solvents.