Abstract:
A remote device includes an image sensor, a readout circuit and a processing unit. The image sensor successively captures a first image and a second image containing at least one reference beacon image. The readout circuit is configured to read first image data of the first image and second image data of the second image from the image sensor. The processing unit is configured to calculate an image feature of the at least one reference beacon image according to the first image data and control the readout circuit to only read the second image data of a range of interest in the second image according to the image feature. There is further provided a power saving method of an interactive system.
Abstract:
A locating method applied to an optical touch device is disclosed. The optical touch device includes at least one image detecting component for detecting an imaging position of an object and generating a touch position of the object on a plane according to the imaging position. The at least one image detecting component includes a plurality of pixels. The locating method includes dividing the pixels into a first group and a second group along a first direction, analyzing dimension ratios of a darkness point respectively relative to the first group and the second group when the darkness point formed by the object is simultaneously detected by the first group and the second group, and calculating the imaging position of the darkness point inside the image detecting component according to the dimension ratios.
Abstract:
A first electronic apparatus capable of pairing with a second electronic apparatus for wireless communication includes a light sensor and a processing circuit. The light sensor is used for detecting light emitted by the second electronic apparatus. The processing circuit is coupled the light sensor and used for decoding the detected light to generate decoded pairing data. The first and second electronic apparatuses pair successfully according to the decoded pairing data. The light carrying the pairing data is generated by the second electronic apparatus based on at least one of brightness variation(s), color variation(s), and pattern variation(s).
Abstract:
A device for determining a gesture includes a light emitting unit, an image sensing device and a processing circuit. The light emitting unit emits a light beam. The image sensing device captures an image of a hand reflecting the light beam. The processing circuit obtains the image and determine a gesture of the hand by performing an operation on the image; wherein the operation includes: selecting pixels in the image having a brightness greater than or equal to a brightness threshold; sorting the selected pixels; selecting a first predetermined percentage of pixels from the sorted pixels; dividing the adjacent pixels in the first predetermined percentage of pixels into a same group; and determining the gesture of the hand according to the number of groups of pixels. A method for determining a gesture and an operation method of the aforementioned device are also provided.
Abstract:
An optical touch control apparatus, for detecting displacement between an object and the optical touch control apparatus. The optical touch control apparatus comprises: an object detecting apparatus, for detecting the object to generate an object image, having a first detecting area in a first mode and having a second detecting area in a second mode, wherein the first detecting area is larger than the second detecting area; an image sensor, for capturing at least one frame of the object image; and a control unit, for adjusting an image capturing area of the image sensor, according which one of the first detecting area and the second detecting area the object detecting apparatus utilizes.
Abstract:
A motion sensing method for an object includes: receiving a distance detection result which is used for indicating distance detection information of the object in a neighborhood of a motion sensing apparatus; and determining whether to perform optical motion sensing upon the object of the neighborhood according to the distance detection result.
Abstract:
An exposure adjusting apparatus, which comprises: an image sensor, for catching an image according to an exposure parameter; a computing apparatus, for computing an exposure amount of the image and for determining whether the exposure amount is in a predetermined exposure range or not; and an exposure updating apparatus. If the exposure amount is in the predetermined exposure range, the exposure updating apparatus does not adjust the exposure amount. If the exposure amount is not in the predetermined exposure range, the exposure updating apparatus generates at least one adjusting amount according to at least one of the predetermined exposure range, the exposure amount and the exposure parameter, and utilizes the adjusting amount to increase or decrease the exposure parameter to generate a new exposure parameter.
Abstract:
A method used for a portable electronic apparatus includes: providing a touch panel for receiving an input of a user; and, determining whether to perform a sensing operation upon an sensed object corresponding to the input of the user via the touch panel to generate a sensing result which is associated with physiological characteristics.
Abstract:
A power-saving sensing module includes a light source, a first and a second sensor, a first and a second detection unit, and a controller. The first sensor detects a first image corresponding to a working plane in response to at least a part of the light ray from the light source to generate a first sensing signal. The first detection unit generates a displacement signal in response to the first sensing signal. The second sensor detects a second image corresponding to an object in response to at least a part of light ray to generate a second sensing signal. The second detection unit generates a touch signal corresponding to the object in response to the second sensing signal. The controller outputs a control signal in response to the touch signal. The first detection unit operates at a dormant state or a sensing state in response to the control signal.
Abstract:
Disclosed are a distance measuring method and a distance measuring apparatus. During the distance measuring, an image is obtained. If the location of a center of gravity of the image is within a first segment, the calculating unit calculates a distance between the object and the distance measuring apparatus corresponding to the projection point, according to a first mapping relationship and the location of a center of gravity of the image. If the location of a center of gravity of the image is within a second segment, the calculating unit calculates a distance between the object and the distance measuring apparatus corresponding to the projection point according to a second mapping relationship and the location of a center of gravity of the image.