Abstract:
Improved communications, including indication of channel occupancy time-structure information (COT-SI) for NR-U sidelink (NR-U SL) operations is disclosed. A UE may establish a current channel occupancy time (COT) on a shared communication spectrum for UE transmissions in response to a successful listen before talk (LBT) procedure. The UE may then generates a COT structure information (COT-SI) message including at least a remaining duration of the current COT and a set of time and frequency resources of the current COT. The COT-SI message may be transmitted by the UE to one or more neighboring UEs via sidelink transmission. Once the COT-SI message is sent, the UE transmits the UE transmission within the set of time and frequency resource of the current COT.
Abstract:
Independent ranging sessions that are initiated by multiple initiating user equipments (UEs) are detected and combined into a single combined ranging session to reduce overhead. The independent ranging sessions may be determined to be nearby and concurrent when a UE detects a number of ranging cycles within a predetermined time. The UE may send messages to each initiator UE indicating that the ranging sessions should be combined and the initiator UEs will terminated initiating any further ranging sessions. Combined ranging session may be initiated by the UE and may include all of the participating UEs from the independent ranging sessions. The combined ranging session continues until it is determined that one or more UEs in the combined ranging session are not receiving ranging signals from other UEs.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may identify a plurality of UEs for a UE positioning session. The UE may identify a set of parameters for the UE positioning session. The UE may broadcast information indicating at least the set of parameters for the UE positioning session. The UE may receive, from at least one of the plurality of UEs, a set of positioning reference signals (PRSs) based at least in part on the set of parameters. The UE may broadcast, based at least in part on the set of PRSs, positioning information. Numerous other aspects are provided.
Abstract:
Various aspects of the disclosure relate to managing ephemeris information. Provisions are made for providing ephemeris information to a user terminal (UT). Messages are defined for sending ephemeris information and for requesting ephemeris information. Ephemeris information for a subset of the satellites in a constellation may be sent to a UT to reduce signaling load. A UT may manage a database of ephemeris information to ensure freshness of the ephemeris information.
Abstract:
Various aspects of the disclosure relate to handoff of a user terminal in communication with a satellite network portal through a satellite. In some aspects, a satellite network portal and a user terminal use a satellite handoff information to determine when to handoff the user terminal from one cell to another and/or from one satellite to another. In some aspects, a user terminal sends capability information, location information, or other information to a satellite network portal whereby, based on this information, the satellite network portal generates the satellite handoff information and/or selects a handoff procedure for the user terminal. In some aspects, handoff of a user terminal to a different satellite involves the user terminal conducting satellite signal measurements and sending a measurement message to the satellite network portal. In some aspects, the satellite network portal generates new satellite handoff information as a result of receiving a measurement message.
Abstract:
A method and apparatus for operating one or more satellites in a non-geosynchronous orbit (NGSO) satellite constellation are disclosed. In some aspects, the satellite may allocate a first frequency band to a first beam, and may allocate a second frequency band to a second beam. Then, if the first beam is disabled, the satellite may re-map the first frequency band from the first beam to the second beam. In this manner, frequency resources initially allocated to a disabled beam may be re-mapping to another, non-disabled beam.
Abstract:
Various aspects of the disclosure relate to controlling the transmit power of a satellite by controlling a duty cycle associated with satellite transmission. In some implementations, a satellite network portal (SNP) may send waveforms to a satellite that relays the waveforms to user terminals (UTs). The SNP may control the duty cycle of the waveform transmission (e.g., by transmitting on a subset of a subframe) to thereby control an average transmission power of the satellite when the satellite transmits to the UTs. In some implementations, a satellite or UT may control the duty cycle of transmission by the satellite (e.g., by transmitting on a subset of a subframe) to thereby control an average transmission power of the satellite when the satellite transmits.
Abstract:
Various aspects of the disclosure relate to handoff of a user terminal in communication with a satellite network portal through a satellite. In some aspects, a satellite network portal and a user terminal use a satellite handoff information to determine when to handoff the user terminal from one cell to another and/or from one satellite to another. In some aspects, a user terminal sends capability information, location information, or other information to a satellite network portal whereby, based on this information, the satellite network portal generates the satellite handoff information and/or selects a handoff procedure for the user terminal. In some aspects, handoff of a user terminal to a different satellite involves the user terminal conducting satellite signal measurements and sending a measurement message to the satellite network portal. In some aspects, the satellite network portal generates new satellite handoff information as a result of receiving a measurement message.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for transmitting relatively more critical information between devices using a first wireless technology and transmitting relatively less critical information using a second wireless technology more susceptible to interference than the first wireless technology. One example method generally includes performing an association with a second apparatus via a first wireless technology, wherein the first wireless technology requires proximity between the first and second apparatuses; communicating first information with the second apparatus via the first wireless technology, a second wireless technology, or a combination of both the first and second wireless technologies, while the first and second apparatuses are still in proximity; and communicating second information with the second apparatus via the second wireless technology.
Abstract:
Various aspects of the disclosed approach described herein allows a reduction of preamble overhead by tailoring transmitted packet preambles based on an expected level of clock-related offset between a transmitter and a receiver for a pair of communicating nodes. An estimate may be maintained at the transmitter of maximum time and frequency offsets between the transmitter and the receiver. The estimate may then be utilized to create a customized preamble sequence for generating the packet preamble. The estimate may also be utilized to select a particular modulation technique for the packet preamble.