Abstract:
Methods, systems, and devices are described for reconfiguring a user equipment (UE) to operate in a reconfigured TDD UL-DL configuration. An initial uplink-downlink (UL-DL) configuration for TDD communication may be provided for communication between an e Node B and a UE. One or more subframes within each frame transmitted using the initial UL-DL configuration may be identified as flexible subframes. The identification of flexible subframes may permit the identification of timing for HARQ transmissions that does not change when a reconfiguration takes place. A different UL-DL configuration may be transmitted to the UE, in which at least one flexible subframe is to be changed from an uplink subframe to a downlink subframe. The different UL-DL configuration may be transmitted by, for example, a pseudo-uplink grant to the UE, which indicates that the UE is to reconfigure one or more flexible subframes from uplink to downlink transmission.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus groups subframes of a time division duplex (TDD) configuration of a serving cell into a set of anchor subframes and a set of non-anchor subframes. The apparatus also separately bundles positive acknowledgements (ACKs) and/or negative acknowledgements (NACKs) of the anchor subframes, and ACKs and/or NACKs of the non-anchor subframes.
Abstract:
Interference mitigation solutions are disclosed for interference experienced based on asymmetric uplink (UL)/downlink (DL) slot configuration. The aggressor/victim network entities are identified using either measurement or static/semi-static means, such that the victim network entities that may be impacted by interference from aggressor network entity transmissions are identified. Inter Cell Interference Coordination (ICIC) mechanisms are extended to negotiate and address scheduling that intelligently mitigates interference that occurs in the colliding slots.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for flexible resource mapping and modulation and coding scheme (MCS) determination in wireless communication systems. According to certain aspects, a method for wireless communications that may be performed by a transmitter is provided. The method generally includes determining MCSs to use for each of multiple portions of a transport block and transmitting the portions of the transport block according to the determined MCSs to a wireless node. Flexible MCS and resource mapping determination may improve demodulation performance for code blocks that are far from pilots.
Abstract:
Methods, systems, and apparatuses are described for flexible transmissions on one or more frequency division duplexing resources. In some aspects, a subset of resources originally allocated for transmissions in a frequency division duplex (FDD) mode of operation associated with a first base station is identified for reallocation, and the identified subset of resources is reallocated to transmissions in a time division duplex (TDD) mode of operation, for example, associated with a second base station.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines an interference type between a time division duplex (TDD) configuration subframe of a serving cell and a corresponding TDD configuration subframe of a neighboring cell, and sets a transmit power for an apparatus in the serving cell based on the interference type. The apparatus in the serving cell may be a user equipment (UE), in which case the apparatus applies a set of uplink (UL) open loop power control parameters for the UE. The apparatus in the serving cell may be a base station (eNB), in which case a DL transmit power is set for the eNB. Depending on the interference type, the DL transmit power may be a fixed, full power DL transmission or an adjusted DL transmission.
Abstract:
Techniques are described for wireless communications at a user equipment (UE). One method includes determining a first cell identifier (ID) associated with a first downlink transmission in a first radio frequency spectrum band of paired radio frequency spectrum bands, determining a second cell ID associated with a second downlink transmission in a second radio frequency spectrum band of the paired radio frequency spectrum bands, and communicating based on the first cell ID and the second cell ID. In some cases, the method may include determining a cell ID associated with a downlink transmission in an uplink radio frequency spectrum band, and receiving the downlink transmission in a subframe of the uplink radio frequency spectrum band. The downlink transmission may be based on the cell ID and a format of a physical uplink shared channel (PUSCH), and may include an eight layer single-user multiple-input multiple-output (SU-MIMO) transmission.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for linear precoding in full-dimensional MIMO (FD-MIMO) systems. According to aspects, an eNB may compress a larger number of antenna elements to a smaller number of antenna ports. The eNB may use a port precoding matrix to transmit reference signals to a UE, receive feedback regarding CSI based on the reference signals, and transmit data to the UE, based on a mapping of multiple data layers and mapping of antenna ports to the physical antenna elements. Further, aspects include performing elevation beamforming by dynamically forming one or more vertical sectors based on UE feedback in the elevation domain.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines a location of a reference subframe based on an A-CSI report uplink subframe, an A-CSI request downlink subframe, a reference delay, and a report delay. In an aspect, the reference delay is a first delay value before the A-CSI report uplink subframe, and the report delay is a second delay value between the A-CSI request downlink subframe and the A-CSI report uplink subframe. The apparatus determines a type of the reference subframe based on the location of the reference subframe and a subframe configuration, the type of the reference subframe being a flexible subframe or a fixed subframe. The apparatus measures at least one of a channel or interference based on the reference subframe and the type of the reference subframe. The apparatus sends, at the A-CSI report uplink subframe, an A-CSI report based on the at least one of the channel or the interference.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus groups subframes of a time division duplex (TDD) configuration of a serving cell into a set of anchor subframes and a set of non-anchor subframes. The apparatus also separately bundles positive acknowledgements (ACKs) and/or negative acknowledgements (NACKs) of the anchor subframes, and ACKs and/or NACKs of the non-anchor subframes.