摘要:
A semiconductor laser driving method, which is usable in an optical disc apparatus, for example, makes it possible to use a semiconductor laser in a low noise condition when the semiconductor laser is RF-modulated, by driving the semiconductor laser under a conditions where the average optical output is offset from peaks appearing in a curve representing the relative intensity of noise to average optical output characteristics of the semiconductor laser. More specifically, RF modulating conditions (frequency, amplitude and waveform) are selected so that the peaks do not enter the range of P*±0.5 mW relative to the practically used average optical output P*, for example.
摘要:
Disclosed is a semiconductor light emitting device improved in static characteristics such as operational current and prolonged in service life. On an n-type GaAs substrate are sequentially grown an n-type GaAs buffer layer having a thickness of 0.3 .mu.m; an n-type AlGaInP cladding layer having a thickness of 1 .mu.m; and an active layer having a MQW structure of GaInP/AlGaInP. Then, a carrier diffusion suppressing layer having a thickness of 50 nm is grown on the active layer at a reduced V/III ratio. On the carrier diffusion suppressing layer are sequentially grown a p-type AlGaInP cladding layer having a thickness of 1 .mu.m; a p-type GaInP layer having a thickness of 0.1 .mu.m; and a p-type GaAs current cap layer having a thickness of 0.3 .mu.m. Then, the p-type AlGaInP cladding layer, p-type GaInP layer, and p-type GaAs current cap layer are selectively etched by typically photolithography, to form a mesa structure, and an n-type GaAs current cap layer is grown to be laminated on both sides of the mesa structure, to form a semiconductor light emitting device.
摘要:
A semiconductor laser includes an n-type GaAs current blocking layer formed at both sides of a stripe portion made of an upper-lying portion of a p-type AlGaInP cladding layer, p-type GaInP intermediate layer and p-type GaAs cap layer to form a current blocking structure, and the p-type AlGaInP cladding layer has a thickness d.sub.1 at both sides of the stripe portion and a thickness d.sub.2 outside them (0
摘要:
An AlGaInP-based buried-ridge semiconductor laser includes an n-type GaAs current blocking layer 8 buried in opposite sides of a ridge stripe portion 7 which is made of an upper-layer portion of a p-type AlGaInP cladding layer 4, p-type GaInP intermediate layer 5 and p-type GaAs contact layer 6. The ridge stripe portion 7 includes tapered regions 7a having the length of L1 at cavity-lengthwise opposite ends of the ridge stripe portion 7.
摘要:
A distributed feedback semiconductor laser has a first cladding layer, an active layer, a guide layer on which a diffraction grating is formed and a second cladding layer, the effective thickness of the guide layer in the waveguide direction being made different in one region to change the phase of a light propagating through the waveguide.
摘要:
A semiconductor laser device including a first semiconductor layer having a strip waveguide structure to obtain optical confinement and a second semiconductor layer having a ridge waveguide structure for defining an electrical current passage region. The strip waveguide structure has a first width, and projects on the first semiconductor layer, extending over the central area of the layer in a longitudinal direction. The ridge waveguide structure projects on the second semiconductor layer and extends in the longitudinal direction with a second width which corresponds to the strip structure. The strip waveguide structure cooperates with the ridge waveguide structure to produce a difference between the refractive index of a center region which extends in the longitudinal direction of the second semiconductor and that of a neighboring region due to the difference in thicknesses between the two, so that the center region serves as an optical waveguide.
摘要:
A distributed feedback semiconductor laser is provided with an optical waveguide having first and second straight-bar portions and a bending portion. The pitch of the grating in the case of light passing through the bending portion is a little longer than that in the case of light passing through the first and second straight-bar portion in order to shift the phase of the light transmitted along the optical waveguide by .lambda./4 where .lambda. is the oscillation wavelength, thereby generating single longitudinal mode laser light.
摘要:
A method of manufacturing a distributed feedback type semiconductor laser comprises a first cladding layer, an active layer disposed on the first cladding layer, a guiding layer disposed on the active layer and a second cladding layer disposed on the guiding layer respectively, in which a grating is disposed on the guiding layer, wherein the method comprises, a step of forming a predetermined material layer on the guiding layer, a step of selectively etching the material layer and the guiding layer until the guiding layer is at least partially exposed thereby forming undulation substantially in a trigonal waveform to the surface of the material layer and the guiding layer, and a step of forming the second cladding layer so as to cover the unevenness. A distributed feedback type semiconductor laser having a grating with an intense coupling the light can be manufactured easily and at a good reproducibility.