Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure includes an operation method of a terminal in a wireless communication system, the method including checking information on at least one control resource set carrying scheduling information for scheduling remaining system information based on a master information block (MIB) received from a base station, checking the scheduling information in the at least one control resource set, and receiving the remaining system information based on the scheduling information.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are disclosed. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for selecting a candidate beam in a wireless communication system is disclosed. The method includes receiving information on a reference signal from a base station, measuring a plurality beams based on the information on the reference signal, and determining at least one candidate beam among the plurality beams, the candidate beam comprising a beam quality above a threshold.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. An embodiment of the present specification relates to an apparatus and a method for MIMO transmission and reception in a closed-loop beamforming system. A communication method of a base station, according to one embodiment of the present invention, may comprise the steps of: transmitting information for channel measurement to a terminal; receiving channel-related information from the terminal; transmitting a first symbol via at least two antennas; and transmitting a second symbol via the at least two antennas by applying different channel mapping rules to the second symbol in the at least two antennas. One embodiment of the present invention can improve overall performance without downward leveling by a symbol transmitted via an antenna having low average channel power.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of operating a terminal and a base station, and a terminal apparatus and base station apparatus, are provided. The method includes receiving a signal including a synchronization sequence and control information, which is transmitted from a neighbor cell, and decoding the control information based on a reception signal strength of the signal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A signal transmission and reception method implemented by a terminal of a mobile communication system is provided. The terminal receives first information including a request for beam related information from a base station and transmits second information including the beam related information based on the first information to the base station. The terminal changes at least one of a Tx beam or a Rx beam associated with the base station, based on the first information and the second information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. An embodiment of the present specification relates to an apparatus and a method for MIMO transmission and reception in a closed-loop beamforming system. A communication method of a base station, according to one embodiment of the present invention, may comprise the steps of: transmitting information for channel measurement to a terminal; receiving channel-related information from the terminal; transmitting a first symbol via at least two antennas; and transmitting a second symbol via the at least two antennas by applying different channel mapping rules to the second symbol in the at least two antennas. One embodiment of the present invention can improve overall performance without downward leveling by a symbol transmitted via an antenna having low average channel power.
Abstract:
A method and a device for transmitting and receiving a signal on the basis of multiple antennas are provided.A transmitting device may include a radio frequency (RF) module transmitting a quadrature amplitude modulation (QAM) signal of a first symbol corresponding to a hybrid frequency shift keying and quadrature amplitude modulation (FQAM) mode and transmitting a QAM signal of a second symbol corresponding to a QAM mode through a second antenna; and a modulation module mapping the QAM signal of the first symbol to one frequency tone among the preset number of frequency tones according to a frequency shift keying (FSK) signal of the first symbol and mapping the second symbol to the frequency tone to which the first symbol is mapped.
Abstract:
An electronic device includes: a plurality of swap devices; a memory storing instructions and data to swap; and a processor configured to execute the instructions to: based on attributes of the data to swap stored in the memory and attributes of at least one swap device of the plurality of swap devices, identify a swap device for swapping the data among the plurality of swap devices, and swap the data using the identified swap device.
Abstract:
In certain embodiments, an electronic device comprises a display; a first memory; a second memory storing a plurality of applications; and a processor, wherein the processor is configured to: switch a screen displayed on the display from a first screen to a second screen, wherein the second screen includes a plurality of objects respectively indicating the plurality of applications; identify applications which are not running among the plurality of applications, in response to the switching to the second screen; and load data of at least one application from the second memory to the first memory, based on a predetermined criteria, before receiving an input selecting the at least one application.
Abstract:
The disclosure relates to a communication technique of fusing a fifth generation (5G) communication system for supporting higher data transmission rate beyond a fourth generation (4G) system with an Internet of things (IoT) technology and a system thereof. The disclosure may be applied to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or a connected car, health care, digital education, a retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. The present disclosure relates to a method and apparatus for searching for or determining information on a beam that a UE or a base station can use for signal transmission and reception in a mobile communication system.