Abstract:
The method, system, and computer-readable medium facilitates monitoring one or more eyes of a vehicle operator during a driving session to generate a plurality of gaze location logs with gaze location values. The gaze location value may be generated by determining a location of the vehicle operator's gaze, determining which area of the vehicle is associated with the gaze location, and assigning the gaze location value based on the area of the vehicle associated with the gaze location. The gaze location logs may be analyzed to determine the duration of the vehicle operator's gaze at each area of the vehicle. Based on the duration of the vehicle operators gaze, one or more recommendations to improve vehicle operator performance may be identified and communicated to the vehicle operator.
Abstract:
The method, system, and computer-readable medium facilitates monitoring a vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle during the course of vehicle operation to determine whether the vehicle operator is impaired (e.g., distracted, drowsy), log data relating to vehicle operator impairment for further analysis, and send the data to a server for analysis. The method, system, and computer-readable medium may monitor the vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle using either or both of optical sensors or accelerometers. In particular, one optical sensor may monitor the vehicle operator to detect eye blinks, head nods, head rotations, and/or gaze fixation. Another optical sensor may monitor the road ahead of the vehicle to detect lane deviation, lane centering, and time to collision. The accelerometers may detect acceleration in the direction of vehicle travel and/or lateral acceleration. The data gathered by the various sensors may be scored to determine whether to change a property and casualty insurance rate charged to vehicle operator and/or vehicle owner and/or vehicle policy.
Abstract:
A system and method are provided for controlling an interior configuration of a vehicle following a collision. Sensor data that includes, or is derived from data that includes, data collected by one or more sensors is received, and a vehicle accident condition indicative of an accident having occurred is detected by processing the sensor data. After detecting the vehicle accident condition, an actuator component is caused to prevent a passenger from adjusting an interior vehicle component outside a predetermined range of physical configurations, while allowing the passenger to adjust the interior vehicle component within the predetermined range of physical configurations.
Abstract:
The following relates generally to using augmented reality (AR) for inspection of a property. In some examples, underlay layer data may be received (e.g., from a camera of an AR viewer device); and overlay layer data may be received (e.g., from a different camera or other overlay layer device). An AR display may be created by correlating the underlay layer data with the overlay layer data. A property inspection indicia may be identified based upon the correlated overlay layer data.
Abstract:
A system and method for measuring a driver’s actual driving behaviors (e.g., acceleration, deceleration) in a manual driving mode to determine their preferred driving style, and then causing an autonomous or semi-autonomous vehicle to operate itself, within limits, in accordance with the drivers’ driving style when operating in a self-driving mode, thereby providing a more familiar and comfortable driving experience for the driver. Data is collected on the actual driving behavior, any pre-existing data is accessed on the actual driving behavior, and the collected data and the pre-existing data are combined. A custom control is then created based upon the combined data, and the custom control is applied to manage the self-driving behavior of the autonomous or semi-autonomous vehicle in a self-driving mode. Additional data continues to be collected on the actual driving behavior, and the custom control is adjusted based upon the collected additional data.
Abstract:
Systems and methods relating to improving the experience of gig-economy workers are disclosed, with particular reference to gig-economy work involving vehicle use. Such systems and methods include automatically monitoring and evaluating activities such as driving during performance of gigs, as well as providing recommendations based thereupon. Gig-related activities may be automatically detected based upon data provided by a mobile device associated with the gig-economy worker, thereby automatically generating a record of such activities for the worker. Telematics data indicative of movement of a vehicle may be collected and analyzed to detect gig-economy activities. During or after performance of gig-economy work, data automatically collected may be used to generate and present recommendations or education points to the gig-economy worker.
Abstract:
A system and method for measuring a driver's actual driving behaviors (e.g., acceleration, deceleration) in a manual driving mode to determine their preferred driving style, and then causing an autonomous or semi-autonomous vehicle to operate itself, within limits, in accordance with the drivers' driving style when operating in a self-driving mode, thereby providing a more familiar and comfortable driving experience for the driver. Data is collected on the actual driving behavior, any pre-existing data is accessed on the actual driving behavior, and the collected data and the pre-existing data are combined. A custom control is then created based upon the combined data, and the custom control is applied to manage the self-driving behavior of the autonomous or semi-autonomous vehicle in a self-driving mode. Additional data continues to be collected on the actual driving behavior, and the custom control is adjusted based upon the collected additional data.
Abstract:
A system and method are provided for controlling an interior configuration of a vehicle. The system may include an interior vehicle component; an actuator component configured to adjust/restrict movement of a physical configuration of the interior vehicle component; one or more sensors configured to collect data corresponding to a state of the vehicle, an action of the vehicle, and/or an internal or external environment of the vehicle; and one or more processors configured to receive sensor data and detect, by processing the sensor data, a vehicle accident condition. After the one or more processors detect the vehicle accident condition, the one or more processors may cause the actuator component to adjust the interior vehicle component from a first physical configuration to a second physical configuration, or may cause the actuator component to restrict movement of the interior vehicle component to a predetermined range of physical configurations.
Abstract:
A system and method are provided for dampening impact to a vehicle. The system may include an adjustable exterior vehicle component configured to dampen an external force exerted on the vehicle, a vehicle frame component configured to couple to the adjustable exterior vehicle component, an actuator component configured to adjust a physical configuration of the adjustable exterior vehicle component, an external communication component configured to collect driving environment data representing an external environment of the vehicle, and one or more processors configured to receive driving environment data and detect, by processing the driving environment data, an external driving condition. When the one or more processors detect the external driving condition, the one or more processors may cause the actuator component to adjust the adjustable exterior vehicle component to a specific physical configuration.
Abstract:
Systems and methods are provided for improving safety of one or more vehicle occupants. An example method for improving safety of one or more vehicle occupants includes accessing interior vehicle configuration data that is generated by, or derived from data generated by an interior data collection component, the data representing an interior space of a vehicle; determining, by processing the interior vehicle configuration data, location and orientation of one or more vehicle occupants; selecting a plurality of vehicle safety components to be active based on the location and orientation of the one or more vehicle occupants, and setting the plurality of vehicle safety components to an active state in which the plurality of vehicle safety components are deployed, when an emergency condition is detected.