Abstract:
Systems, method, and devices are provided for transmitting data. In one aspect, a method includes providing a plurality of communication modules, each of the plurality of communication modules configured to transmit data using a different communication method; establishing, with the plurality of communication modules, a plurality of simultaneous respective communication links to a remote terminal; selecting, based on a switching criterion, at least one of the plurality of simultaneous respective communication links to be used to transmit data; and transmitting data via said at least one of the plurality of simultaneous respective communication links selected based on the switching criterion.
Abstract:
The present invention provides systems and methods for improved data communication between communication terminals such as a base station and an unmanned aerial vehicle. In some instances, the systems and methods described herein provide robust transmission uplink data such as control data and wideband transmission of downlink data such as image data or other sensor data, while avoiding interference between the uplink data transmission and the downlink transmission.
Abstract:
Systems, methods, and devices for propelling self-propelled movable objects are provided. In one aspect, a rotor assembly for a self-propelled movable object comprises: a hub comprising a first fastening feature; a drive shaft comprising a second fastening feature and directly coupled to the hub by a mating connection of the first and second fastening features, wherein the drive shaft is configured to cause rotation of the hub such that the mating connection of the first and second fastening features is tightened by the rotation; and a plurality of rotor blades coupled to the hub and configured to rotate therewith to generate a propulsive force.
Abstract:
The present invention provides an apparatus and related methods for stabilizing a payload device such an imaging device. The methods and apparatus provide fast response time for posture adjustment of the payload device while reducing the energy used.
Abstract:
The present invention provides an apparatus for stabilizing an imaging device and methods of using the same for a wide variety of applications including photography, video, and filming. Also provided are unmanned vehicles including aerial vehicles that contain the apparatus disclosed herein.
Abstract:
The present invention provides methods and apparatus for unmanned aerial vehicles (UAVs) with improved reliability. According to one aspect of the invention, interference experienced by onboard sensors from onboard electrical components is reduced. According to another aspect of the invention, user-configuration or assembly of electrical components is minimized to reduce user errors.
Abstract:
The present application discloses a remote control method and apparatus for controlling the state of a movable object and/or a load carried thereon. The remote control method comprising: receiving, via an apparatus, a state signal that corresponds to a user's position; remote-controlling the state of the a load being carried on a movable object based on the state signal; wherein the state of the load is the result of combining the movement of the load relative to the movable object and the movement of the object relative to its environment. For example, the control of the state can be achieved through the state of the apparatus itself, a user's state captured by an apparatus, a graphical interface on a screen of an apparatus, or a voice command.
Abstract:
Systems, devices, and methods for a transformable aerial vehicle are provided. In one aspect, a transformable aerial vehicle includes: a central body and at least two transformable frames assemblies respectively disposed on the central body, each of the at least two transformable frame assemblies having a proximal portion pivotally coupled to the central body and a distal portion; an actuation assembly mounted on the central body and configured to pivot the at least two frame assemblies to a plurality of different vertical angles relative to the central body; and a plurality of propulsion units mounted on the at least two transformable frame assemblies and operable to move the transformable aerial vehicle.
Abstract:
A method for controlling an unmanned aerial vehicle (UAV) includes determining whether the UAV is within a first flight restriction zone or a second flight restriction zone and effecting a restriction on the UAV in accordance with a result of the determination, including prohibiting the UAV from flying in response to determining that the UAV is within the first flight restriction zone, or controlling the UAV to fly below a flight ceiling in response to determining that the UAV is within the second flight restriction zone.
Abstract:
An unmanned aircraft includes a circuit board with an inertia sensor, and a weight block configured to have a flat surface and a recess formed on the flat surface, and a housing assembly configured to form an inner chamber to accommodate the circuit board and the weight block. The circuit board is embedded in the recess by fixedly bonding to the flat surface through adhesion.