Abstract:
A gate driver includes a plurality of stages connected to each other in a cascade manner, where each of the stages includes an input unit which connects a first input terminal and a first node and includes a first input transistor and a second input transistor, where an output terminal of the first input transistor and an input terminal of the second input transistor are connected to a second node, and the input unit further includes a storage capacitor which connects the first input terminal and the second node.
Abstract:
A display device includes a display area including a gate line and a data line and a gate driver connected to an end of the gate line, the gate driver including at least one stages integrated on a substrate configured to output a gate voltage, in which the stage includes an inverter unit and an output unit, in which the output unit includes a first transistor and a first capacitor. The first transistor includes an input terminal applied with a clock signal, a control terminal connected to the node Q, and an output terminal connected to a gate voltage output terminal through which the gate voltage is output. An inverter voltage output from the inverter is lower than the low voltage of the gate voltage output by the output unit.
Abstract:
A gate driver includes a plurality of stage circuits to output a clock signal from the outside as gate signals. A jth stage circuit includes an input unit to charge a first node at an initial voltage when a first input signal is input to a first input terminal, a buffer unit to output the clock signal as a gate signal to an output terminal when the initial voltage is supplied to the first node, a holding unit to maintain the first node at a reset power source level when the clock signal is supplied to the holding unit, and an inverter unit to supply the clock signal or the reset power source to the holding unit. The input unit maintains the first node at a second input signal input voltage to a second input terminal when a third input signal is input to a third input terminal.
Abstract:
Embodiments relate to a display device including: a first base substrate; gate lines disposed on the first base substrate, the gate lines extending in a first direction; parasitic capacitance electrodes coupled to the gate lines; data lines extending in a second direction crossing the first direction; transistors, each coupled to one of the gate lines and coupled to one of the data lines; and pixels sequentially arranged in the first direction, each of the pixels coupled to a corresponding one of the transistors, respectively. Each of the transistors includes a gate electrode, a source electrode, and a drain electrode, and at least two drain electrodes among the drain electrodes of the transistors each overlap a corresponding one of the parasitic capacitance electrodes in different areas as viewed from a plan view.
Abstract:
A display device includes: a first switching element which transmits a first data voltage; a second switching element which transmits a second data voltage; a driving transistor connected to the first switching element and the second switching element, where the driving transistor is driven based on the first data voltage and the second data voltage; and an organic light emitting diode connected to the driving transistor, where the organic light emitting diode emits light based on an output of the driving transistor, and a driving method thereof.
Abstract:
A display device includes a display area including a gate line and a data line and a gate driver connected to an end of the gate line, the gate driver including at least one stages integrated on a substrate configured to output a gate voltage, in which the stage includes an inverter unit and an output unit, in which the output unit includes a first transistor and a first capacitor. The first transistor includes an input terminal applied with a clock signal, a control terminal connected to the node Q, and an output terminal connected to a gate voltage output terminal through which the gate voltage is output. An inverter voltage output from the inverter is lower than the low voltage of the gate voltage output by the output unit.
Abstract:
A display system includes: a host processor which outputs first image data and outputs scan frequency information and a partial scan enable signal, based on an image driving frequency; a display module controlled by the host processor; and an interface. The display module includes: a display driving circuit which controls a selection of pixel rows to which the data signals are supplied based on the scan frequency information and the partial scan enable signal; and a display panel which displays an image on selected pixel rows based on the data signals. In a video mode of the interface, the host processor divides and outputs the first image data through the interface during transmission periods, based on the image driving frequency, and suspends an output of the first image data through the interface during suspend periods.
Abstract:
A display apparatus including: a display panel configured to display an image based on input image data; a data driver configured to output a data voltage to the display panel; and a driving controller configured to determine a driving frequency of the display panel based on flicker values for grayscale values of the input image data and output a driving frequency signal representing the driving frequency of the display panel to a host.
Abstract:
A display apparatus includes a display panel, a first gate driver, a second gate driver, a third gate driver, and a data driver. The display apparatus is operable in a low frequency driving mode, and the low frequency driving mode includes a writing frame and a holding frame. At least one of gate power voltages used to generate a first gate signal, a second gate signal, and an emission signal has a first voltage level in the writing frame of the low frequency driving mode and a second voltage level in the holding frame of the low frequency driving mode. The data voltage is applied to the pixel in the writing frame of the low frequency driving mode. The data voltage applied to the pixel in the writing frame of the low frequency driving mode is maintained in the holding frame of the low frequency driving mode.
Abstract:
A display device includes: a pixel part including a plurality of pixels; a first scan driver to provide a first scan signal to each of the pixels; and an initialization controller to control the first scan driver. Each of the pixels includes a pixel circuit including a plurality of transistors, and a light emitting element connected to the pixel circuit, an anode of the light emitting element is to be initialized to a first initialization voltage in response to the first scan signal having a gate-on level, and the initialization controller is to determine whether to provide the first scan signal having the gate-on level to each of the pixels for each frame.