Abstract:
A pattern structure includes a plurality of pattern structure units arranged substantially on a same plane, where each of the pattern structure units has a first surface and a second surface, which are opposite to each other, and a microstructure is defined on the first surface of each of the pattern structure units, and a flattening layer disposed on the second surface of each of the plurality of pattern structure units, where the flattening layer connects the pattern structure units with each other, and a vertical step difference exists between second surfaces of the pattern structure units.
Abstract:
An imprinting apparatus includes: a coating unit which coats a substrate with ink including a photocurable resin in a diluent; a pressing unit which presses the ink with an imprint stamp including an uneven pattern; and a light source which irradiates light to the ink, which is in a pressed state, and cures the photocurable resin. The coating unit, the pressing unit and the light source move relative to the substrate in a processing direction. The coating unit is located ahead of the pressing unit in the processing direction.
Abstract:
A patterning method using an imprint mold, to form an imprinted pattern structure, includes providing a resist layer from which the pattern structure will be formed, performing a first imprint process on a first area of the resist layer by using the imprint mold to form a first pattern of the pattern structure through deformation of the resist layer in the first area, and performing a second imprint process on a second area of the resist layer by using the imprint mold to form a second pattern of the pattern structure through deformation of the resist layer in the second area. The first and second areas are overlapped with each other in a third area of the resist layer, and the performing the second imprint process deforms a first portion of the first pattern in the third area to form the second pattern.
Abstract:
A master wafer includes: a plurality of unit wafers each including a pattern disposed thereon; a coupling surface defined on each of the unit wafers; and a coupling part which couples adjacent unit wafers among the plurality of unit wafers on which the coupling surface is defined, to each other.
Abstract:
A method of forming a pattern by using an imprint process includes: forming an adhesion promoting layer only in a pattern formation region on a substrate; coating a resin to cover the substrate and the adhesion promoting layer; transferring a pattern of a stamp mold to the resin covering the substrate and the adhesion promoting layer, by pressing the stamp mold onto the resin; irradiating ultraviolet light onto the resin covering the substrate and the adhesion promoting layer, to cure the resin and form a pattern of the cured resin to correspond to the pattern of the stamp mold, on the substrate; and detaching the stamp mold from the substrate, to leave a portion of the cured resin pattern only on the adhesion promoting layer on the substrate and to remove a remaining portion of the cured resin pattern from the substrate.
Abstract:
A display apparatus includes: a display device configured to output a first image; an optical coupler configured to: combine the first image received through a first path from the display device with a second image received through a second path that is different from the first path, output, through an exit surface of the optical coupler, a first light corresponding to the first image in a first polarization and a second light corresponding to the second image in a second polarization; and a polarization selection optical system arranged on the exit surface of the optical coupler and configured to have different refractive power with respect to the first light of the first polarization and the second light of the second polarization.
Abstract:
A waveguide type display apparatus is provided. This waveguide type display apparatus includes a waveguide through which an image proceeds and a leakage image reducer configured to reduce emission of a leakage image leaked from the waveguide without total internal reflection in the waveguide, from among images, to the outside by a volume grating.
Abstract:
Disclosed are a method and a system for processing a computer-generated hologram (CGH). The system for processing a CGH includes a CGH generation apparatus and a display apparatus. The CGH generation apparatus repeatedly performs a process of propagating object data from a first depth layer to a second depth layer, changing amplitude data of the object data to second predefined amplitude data, back-propagating the object data from the second depth layer to the first depth layer, and changing the amplitude data of the object data to first predefined amplitude data, and generates a CGH by using the object data.
Abstract:
Provided is a device configured to enlarge an exit pupil area of a visual optical apparatus, the device including a diffraction grating configured to output a plurality of diffracted light beams of a plurality of diffraction orders by diffracting an incident light beam, and a waveguide provided on the diffraction grating and configured to form an exit pupil based on a first diffracted light beam among the plurality of diffracted light beams output from the diffraction grating and to form exit pupil orders based on a second diffracted light beam among the plurality of diffracted light beams output from the diffraction grating.
Abstract:
A display apparatus may include: an image generator configured to generate an image by using light; a holographic optical element configured such that when a single image is incident as reference light on the holographic optical element, the holographic optical element focuses a plurality of images corresponding to the single image on spatially different points as signal light; and an image deflector configured to deflect the image received from the image generator to the holographic optical element in a given direction.