Abstract:
A strain-relieved buffer is formed by forming a first silicon-germanium (SiGe) layer directly on a surface of a bulk silicon (Si) substrate. The first SiGe layer is patterned to form at least two SiGe structures so there is a space between the SiGe structures. An oxide is formed on the SiGe structures, and the SiGe structures are mesa annealed. The oxide is removed to expose a top portion of the SiGe structures. A second SiGe layer is formed on the exposed portion of the SiGe structures so that the second SiGe layer covers the space between the SiGe structures, and so that a percentage Ge content of the first and second SiGe layers are substantially equal. The space between the SiGe structures is related to the sizes of the structures adjacent to the space and an amount of stress relief that is associated with the structures.
Abstract:
Methods of forming nanosheets for a semiconductor device are provided including providing a silicon on insulator (SOI) handle wafer, the SOT handle wafer including a silicon layer and a dielectric layer on the silicon layer; providing a first donor wafer; bonding the SOI handle wafer and the first donor wafer together to provide a bonded structure; debonding the bonded structure to provide an intermediate wafer including a plurality of silicon or non-silicon nano sheets and a plurality of dielectric layers alternately stacked; and bonding the intermediate wafer to a second donor wafer to provide a final wafer including a plurality of silicon or non-silicon layers and a plurality of dielectric layers alternately stacked, wherein the final wafer includes at least one more pair of silicon or non-silicon and dielectric layers than the intermediate wafer.
Abstract:
Exemplary embodiments provide methods for fabricating a nanosheet structure suitable for field-effect transistor (FET) fabrication. Aspects of exemplary embodiment include selecting an active material that will serve as a channel material in the nanosheet structure, a substrate suitable for epitaxial growth of the active material, and a sacrificial material to be used during fabrication of the nanosheet structure; growing a stack of alternating layers of active and sacrificial materials over the substrate; and selectively etching the sacrificial material, wherein due to the properties of the sacrificial material, the selective etch results in remaining layers of active material having an aspect ratio greater than 1 and substantially a same thickness and atomic smoothness along the entire cross-sectional width of each active material layer perpendicular to current flow.