Abstract:
A weight cell and device are herein disclosed. The weight cell includes a first field effect transistor (FET) and a first resistive memory element connected to a drain of the first FET, a second FET and a second resistive memory element connected to a drain of the second FET, the drain of the first FET is connected to a gate of the second FET and the drain of the second FET is connected to a gate of the first FET, and a third FET, and a load resistor connected to a drain of the third FET.
Abstract:
A computing cell and method for performing a digital XNOR of an input signal and weights are described. The computing cell includes at least one pair of FE-FETs and a plurality of selection transistors. The pair(s) of FE-FETs are coupled with a plurality of input lines and store the weight. Each pair of FE-FETs includes a first FE-FET that receives the input signal and stores a first weight and a second FE-FET that receives the input signal complement and stores a second weight. The selection transistors are coupled with the pair of FE-FETs.
Abstract:
Integrated circuit devices may include a stack that includes channel regions and gate electrodes stacked in an alternating sequence in a vertical direction. The channel regions may include impurities having a first conductivity type. The integrated circuit devices may also include source/drain regions on respective opposing sides of the stack, and the source/drain regions may be spaced apart from each other in a horizontal direction and may include impurities having a second conductivity type that is different from the first conductivity type. The integrated circuit devices may further include extension regions that may be between respective ones of channel regions and one of the source/drain regions and may include impurities having the second conductivity type. Each of the extension regions may have a thickness in the vertical direction that is less than those of the channel regions and the one of the source/drain regions.
Abstract:
Integrated circuit devices may include a stack that includes channel regions and gate electrodes stacked in an alternating sequence in a vertical direction. The channel regions may include impurities having a first conductivity type. The integrated circuit devices may also include source/drain regions on respective opposing sides of the stack, and the source/drain regions may be spaced apart from each other in a horizontal direction and may include impurities having a second conductivity type that is different from the first conductivity type. The integrated circuit devices may further include extension regions that may be between respective ones of channel regions and one of the source/drain regions and may include impurities having the second conductivity type. Each of the extension regions may have a thickness in the vertical direction that is less than those of the channel regions and the one of the source/drain regions.
Abstract:
Exemplary embodiments provide for fabricating a biaxially strained nanosheet. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial superlattice having one or more periods, each of the periods comprising at least three layers, an active material layer, a first sacrificial material layer and a second sacrificial material layer, the first and second sacrificial material layers having different material properties; in each of the one or more periods, placing each of the active material layers between the first and second sacrificial material layers, wherein lattice constants of the first and second sacrificial material layers are different than the active material layer and impose biaxial stress in the active material layer; selectively etching away all of the first sacrificial material layers thereby exposing one surface of the active material for additional processing, while the biaxial strain in the active material layers is maintained by the second sacrificial material layers; and selectively etching away all of the second sacrificial material layers thereby exposing a second surface of the active material layers for additional processing.
Abstract:
A weight cell and device are herein disclosed. The weight cell includes a first field effect transistor (FET) and a first resistive memory element connected to a drain of the first FET, a second FET and a second resistive memory element connected to a drain of the second FET, the drain of the first FET is connected to a gate of the second FET and the drain of the second FET is connected to a gate of the first FET, and a third FET, and a load resistor connected to a drain of the third FET.
Abstract:
A weight cell including first and second bi-directional memory elements each configured to switch between a first resistance state and a second resistance state different than the first resistance state. A first input line is connected to a first terminal of the first bi-directional memory element, and a second input line is connected to the first terminal of the second bi-directional memory element. A first diode in forward bias connects the second terminal of the first bi-directional memory element to a first output line, a second diode in reverse bias connects the second terminal of the second bi-directional memory element to a second output line, a third diode in reverse bias connects the second terminal of the first bi-directional memory element to the second output line, and a fourth diode in forward bias connects the second terminal of the second bi-directional memory element to the first output line.
Abstract:
A semiconductor device and method for providing a semiconductor device are described. The semiconductor device includes a channel, a gate, and a multilayer gate insulator structure between the gate and the channel. The multilayer gate insulator structure includes at least one ferroelectric layer and at least one dielectric layer. The at least one ferroelectric layer and the at least one dielectric layer share at least one interface and have a strong polarization coupling.
Abstract:
A semiconductor memory device and method for providing the semiconductor memory device are described. The semiconductor memory device includes a ferroelectric capacitor. The ferroelectric capacitor includes a first electrode, a second electrode and a multilayer insulator structure between the first and second electrodes. The multilayer insulator structure includes at least one ferroelectric layer and at least one dielectric layer. The at least one ferroelectric layer and the at least one dielectric layer share at least one interface and have a strong polarization coupling.
Abstract:
A bidirectional memory cell includes a write unit and a read unit. The write unit and the read unit each include an MTJ structure having a first and second pinned layers and a free layer. The first and second pinned layers are separated from the free layer by at least one tunnel barrier. The first pinned layer is electrically coupled to a first write line through a first diode. The second pinned layer is electrically connected to a second word line through a second diode. The free layer is electrically coupled to a first bit line. Additionally, the free layer of the read unit is magnetically coupled to the free layer of the write unit.