Abstract:
A display device includes driving apparatus having first, second, third, and fourth gate drivers. The first and second gate drivers are connected to gate lines and are positioned on one side of the display device side by side. The third and fourth gate drivers are connected to gate lines and are positioned on the other side of the display device side by side. The first and third gate drivers apply the gate signal to the same gate line, and the second and fourth gate drivers apply the gate signal to the same gate line.
Abstract:
A device and corresponding method of fabrication thereof are disclosed, where the device provides a contact for semiconductor and display devices, the device including a substrate, a first wiring line assembly formed on the substrate, an under-layer formed on the first wiring line assembly, an organic insulating layer formed on the under-layer such that the organic insulating layer covers the under-layer, a pattern on the organic insulating layer for contact holes to expose the under-layer, etched contact holes formed in the under-layer in correspondence with the pattern such that the underlying first wiring line assembly is exposed to the outside, a cured organic insulating layer formed on the under-layer, and a second wiring line assembly formed on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the etched contact holes; and the corresponding method of fabrication including forming a first wiring line assembly on a substrate, forming an under-layer on the first wiring line assembly, forming an organic insulating layer such that the organic insulating layer covers the under-layer, patterning the organic insulating layer to thereby form contact holes exposing the under-layer, etching the under-layer exposed through the contact holes such that the underlying first wiring line assembly is exposed to the outside, curing the organic insulating layer, and forming a second wiring line assembly on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the contact holes.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode and a pair of redundant electrodes on the first and the second portions of the lower conductive film, respectively, the redundant electrodes exposing a part of the second portion of the lower conductive film; removing the exposed part of the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode on the first portion of the lower conductive film; removing the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode on the first portion of the lower conductive film; removing the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.