摘要:
Disclosed are compositions and methods for using label free optical biosensors for performing cell assays. In certain embodiments the assays can be performed in highthough put methods and can be multiplexed.
摘要:
Described herein are multiply-fluorescently-labeled calcium phosphate protein substrates composed of a base coated with a fluorophore-labeled calcium phosphate coating and further having a fluorescently-labeled protein. The multiply-fluorescently-labeled substrate may be a fluorescently labeled calcium phosphate surface having a fluorescently-labeled collagen. The substrates are useful in culturing and studying the activity of a variety of cells, including bone cells. The substrates described herein can be used for both solution- and image-based analysis of cultured cells. New methods for producing and using such coated substrates are also disclosed.
摘要:
Disclosed are compositions and methods related to modulation of KATP channels and methods of treating liver disorders by modulating KATP and mito-KATP channels.
摘要:
A surface plasmon resonance sensor system including a high refractive index prism, a sensor chip, a light source having multiple wavelengths over a broad range of wavelengths, optical lenses, a photodetector, a data acquisition unit, and as defined herein. The sensor chip can include, for example, a thin layer of silicon and gold on one face of a transparent substrate and the prism adjacent to the opposite face of the transparent substrate. Such an arrangement provides variable penetration depths up to about 1.5 micrometers with a dynamic range for sensing index of refraction changes in a sample that are several times greater than that of a conventional SPR sensor. The disclosure provides methods for using the surface plasmon resonance sensor system for cell assay or chemical assay related applications.
摘要:
Disclosed is a system and method for measuring aspects of pathogen intrusion on a live-cell as defined herein. The system and method also provide a method to measure prophylaxis or remedial aspects of a therapeutic candidates in a live-cell or a live-cell model from pathogen intrusion.
摘要:
Labels, methods of making labels and methods of using labels are disclosed. The labels can be manufactured using fiber drawing techniques or by shutter masking. The labels can be used for detecting the presence of an analyte in a sample and for detecting interactions of biomolecules.
摘要:
A cell culture article includes a porous substrate having a plurality of pores and a plurality of interstices in communication with the pores. At least some of the plurality of pores and interstices are sufficiently large for two or more mammary epithelial cells to cluster within the pores or interstices. Non-malignant mammary epithelial cells or breast cancer cells may not attach strongly to the substrate surface, which may encourage cell-cell interaction. In many cases, the article is desirably free of components of unknown origin. The articles may be capable of maintaining culture of malignant and non-malignant mammary epithelial cells and allowing for development of in vivo-like morphologies or characteristics of such cells.
摘要:
A system and method as defined herein for dual-detection of evanescent-wave label-free light and evanescent-wave excited-fluorescent label-emitted light in an optical biosensor.
摘要:
The present invention includes a system and method that uses optical LID biosensors to monitor in real time agonist-induced GPCR signaling events within living cells. Particularly, the present invention includes a system and method for using an optical LID biosensor to screen compounds against a target GPCR within living cells based on the mass redistribution due to agonist-induced GPCR activation. In an extended embodiment, the present invention discloses different ways for self-referencing the optical LID biosensor to eliminate unwanted sensitivity to ambient temperature, pressure fluctuations, and other environmental changes. In yet another extended embodiment, the present invention discloses different ways for screening multiple GPCRs in a single type of cell or multiple GPCRs in multiple types of cells within a single medium solution. In still yet another extended embodiment, the present invention discloses different ways to confirm the physiological or pharmacological effect of a compound against a specific GPCR within living cells.