Abstract:
A zoom lens has, on the most object side, a first lens unit that has a prism with a reflecting surface for folding the path of rays, that has a negative refractive power in its entirety and that is fixed in a magnification change, and an aperture stop that is fixedly positioned in reference to the image pickup surface. The ray-entering surface of the prism has an aspherical surface concave toward the object side that exerts a weaker power for divergence at a position thereon farther from the optical axis. Whereby, a zoom lens with high optical specification performance and extremely thin size in depth direction is provided.
Abstract:
A zoom lens has an easily bendable optical path with high optical specification performance such as a high zoom ratio, a wide-angle arrangement, a small F-number and reduced aberrations. The lens comprises a first lens group GI that remains fixed during zooming, a second lens group G2 that has negative refracting power and moves during zooming, a third lens group G3 that has positive refracting power and moves during zooming, and a fourth lens group G4 that has positive refracting power and moves during zooming and focusing. The first lens group comprises, in order from an object side thereof, a negative meniscus lens component convex on an object side thereof, a reflecting optical element for bending an optical path and a positive lens. The fourth lens group G4 moves in a locus opposite to that of movement of the third lens group G3 during zooming when focusing on infinity.
Abstract:
The invention relates to a high-performance, large-aperture yet wide-angle zoom lens system that can be used with an electronic image pickup device in particular, a method for focusing the same. In particular, the invention is concerned with a high-performance, large-aperture yet wide-angle zoom lens system which has a zoom ratio of the order of 3 at a diagonal field angle of 75° at its wide-angle end, so that it can be used with a single-lens reflex camera using an electronic image pickup device with the number of pixels being of the order of 6,000,000. The zoom lens system comprises a first lens group G1 having negative refracting power, a second lens group G2 having positive refracting power, a third lens group G3 having negative refracting power, a fourth lens group G4 having positive refracting power and a fifth lens group G5 having positive refracting power. Upon movement of an object point, focusing is carried out with the fifth lens group G5.
Abstract:
The invention relates to a zoom lens with an easily bendable optical path, which has high optical specification performance such as a high zoom ratio, a wide-angle arrangement, a small F-number and reduced aberrations. The zoom lens comprises a first lens group G1 that remains fixed during zooming, a second lens group G2 that has negative refracting power and moves during zooming, a third lens group G3 that has positive refracting power and moves during zooming, and a fourth lens group G4 that has positive refracting power and moves during zooming and focusing. The first lens group comprises, in order from an object side thereof, a negative meniscus lens component convex on an object side thereof, a reflecting optical element for bending an optical path and a positive lens. Upon focusing on an infinite object point, the fourth lens group G4 moves in a locus opposite to that of movement of the third lens group G3 during zooming.
Abstract:
The invention provides a zoom lens that operates in such a zooming mode and zoom arrangement that the number of lens elements is reduced to make the total thickness of each lens group thin while stable yet high image-formation capability is maintained, thereby achieving thorough size reductions in video cameras or digital cameras, and an electronic imaging system using the same. The zoom lens comprises a first lens group G1 of negative refracting power, a second lens group G2 of positive refracting power and a third lens group G3 of positive refracting power. For zooming from the wide-angle end to the telephoto end of the zoom lens upon focused on an infinite object point, the second lens group G2 moves toward the object side alone of the zoom lens, and the third lens group G3 moves in a locus different from that of the second lens group while the spacing between adjacent lens groups varies. The second lens group G2 is composed of two lens components, i.e., an object side-lens component and an image side-lens component, one of which is composed of a cemented lens component consisting of a positive lens element and a negative lens element, and the other consists only of a single lens component. The object side-lens component satisfies condition (1) concerning the axial radius-of-curvature ratio between the object side-surface and the image side-surface.
Abstract:
The object of the invention is to reduce the thickness of electronic image pickup equipment as much as possible, using a zooming mode having stable, high image-formation capabilities from an object at infinity to a near-by object. The electronic image pickup equipment comprises a zoom lens system comprising a negative, first lens group G1, a positive, second lens group G2 and a positive, third lens group G3. For zooming from the wide-angle end to the telephoto end of the zoom lens system upon focused on an object at infinity, the separation between G2 and G3 becomes wise. By moving G3 toward the object side of the system, the system can be focused on a nearer-by object. In the zoom lens system, the second lens group G2 comprises one positive lens 2a, one negative lens 2b and a lens subgroup 2c comprising at least one lens, and the third lens group G3 comprises one positive lens. The zoom lens system satisfies conditions with respect to the optical axis distance from the image-side surface of the positive lens 2a to the image-side surface of the negative lens 2b and the focal length ratio in air between the positive lens 2a and the lens subgroup 2c.
Abstract:
First cooling air (50) enters an engine room (1) through a cooling air inlet port (7a) from the exterior of the engine room (1), and is throttled by a suction tube (8a) after passing heat exchangers such as an intercooler (6a), an oil cooler (6b) and a radiator (6c), followed by entering a centrifugal fan (4). The first cooling air (50) is then blown off toward an outer circumference of the centrifugal fan (4). Second cooling air enters the engine room (1) through cooling air inlet ports (7b, 7b) from the exterior of the engine room (1), and flows around an engine (5), various electric equipments such as an alternator (10), and an oil pan (14) while cooling them. The second cooling air is then throttled by a suction tube (8b) before entering the centrifugal fan (4), and blown off toward the outer circumference of the centrifugal fan (4). Two streams of the first and second cooling air (50, 51) are discharged to the exterior through an exhaust port (9). This arrangement enhances the degree of sealing on the engine (5) side to reduce noise, and improves the effect of cooling the electric equipments (10) for higher reliability of the electric equipments (10).
Abstract:
The present invention relates to a small zoom lens system for electronic still cameras or video cameras, which has a zoom ratio lying in the range of about 2.5-3.2 and an F-number lying in the range of about 2-2.8, comprises as small as 7 or 8 lenses and is reduced in terms of both the total length and the lens diameter, and which is characterized by comprising, in order from the object side, at least a first lens group having a positive refractive power, a second lens group having a negative refractive power, a stop and a third lens group having a positive refractive power, and in that during zooming the first lens group remains fixed while the second and third lens groups are moved along the optical axis, and the following conditions (1) and (2) are satisfied:0.9.times..beta..sub.2T /.beta..sub.2W
Abstract:
The present invention provides triterpene derivatives of the following formula: ##STR1## wherein, R.sup.1 is hydrogen or metabolic ester-residue; R.sup.3 is optionally substituted aryl or optionally substituted aromatic heterocycle; X is hydrogen and Y is hydroxy or X and Y may form together oxo; Z is an oxygen or two hydrogen atoms, or the salts thereof, which have anti-endothelin activities and are useful for preventing or treating cardiovascular failure, and pharmaceutical compositions thereof.
Abstract:
A lens component of the present invention is made by cementing a lens LA and a lens LB having a refracting power smaller than a refracting power of the lens LA, and satisfies predetermined conditional expressions. Moreover, in an image forming optical system of the present invention which includes a lens group B having a negative refracting power, a lens group C having a positive refracting power and which moves only toward an object side at the time of zooming from a wide angle end to a telephoto end, and one or two more lens groups additionally, one of the lens components of the present invention is used in the lens group B.