摘要:
A method for defining a full phase layout for defining a layer of material in an integrated circuit is described. The method can be used to define, arrange, and refine phase shifters to substantially define the layer using phase shifting. Through the process, computer readable definitions of an alternating aperture, dark field phase shift mask and of a complimentary mask are generated. Masks can be made from the definitions and then used to fabricate a layer of material in an integrated circuit. The separations between phase shifters, or cuts, are designed for easy mask manufacturability while also maximizing the amount of each feature defined by the phase shifting mask. Cost functions are used to describe the relative quality of phase assignments and to select higher quality phase assignments and reduce phase conflicts.
摘要:
Methods and apparatuses for preparing layouts and masks that use phase shifting to enable production of subwavelength features on an integrated circuit in close (optical) proximity to other structures are described. One embodiment selects from several strategies for resolving conflicts between phase shifters used to define features and (optically) proximate structures that are being defined other than by phase shifting. One embodiment adds additional phase shifters to define the conflicting structures. Another embodiment corrects the shape of the phase shifters in proximity to a conflicting structure. Resulting integrated circuits can include a greater number of subwavelength features even in areas that are in close proximity to structures that were not initially identified for production using a phase shifting mask.
摘要:
A photolithographic mask used for defining a layer in an integrated circuit, or other work piece, where the layer comprises a pattern including a plurality of features to be implemented with phase shifting in phase shift regions is laid out including for patterns comprising high density, small dimension features, and for “full shift” patterns. The method includes identifying cutting areas for phase shift regions based on characteristics of the pattern. Next, the process cuts the phase shift regions in selected ones of the cutting areas to define phase shift windows, and assigns phase values to the phase shift windows. The phase shift values assigned comprise φ and θ, so that destructive interference is caused in transitions between adjacent phase shift windows having respective phase shift values of φ and θ. In the preferred embodiment, φ is equal to approximately θ+180 degrees. Results of the cutting and assigning steps are stored in a computer readable medium, used for manufacturing a mask, and used for manufacturing an integrated circuit. By identifying the cutting areas based on characteristics of the pattern to be formed, the problem of dividing phase shift regions into phase shift windows, and assigning phase shift values to the windows is simplified.
摘要:
Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region. A first container is formed over and in electrical communication with the first region and a second container is formed over and in electrical communication with the second region. In yet another embodiment, the first and second containers define container volumes which are discrete and separated from one another.
摘要:
A process for producing multiple undercut profiles in a single material. A resist pattern is applied over a work piece and a wet etch is performed to produce an undercut in the material. This first wet etch is followed by a polymerizing dry etch that produces a polymer film in the undercut created by the first wet etch. The polymer film prevents further etching of the undercut portion during a second wet etch. Thus, an undercut profile can be obtained having a larger undercut in an underlying portion of the work piece, utilizing only a single resist application step. The work piece may be a multi-layer work piece having different layers formed of the same material, or it may be a single layer of material.
摘要:
Automated techniques for identifying dummy/main features on a mask layer are provided. In a multiple mask layer technique, the definition of a dummy/main feature can be based on connectivity information or functional association information. In a geometry technique, the definition of a dummy/main feature can be based on a feature size, a feature shape, a pattern of features, or a proximity of a feature to a neighboring feature. In one embodiment, multiple definitions and multiple techniques can be used.
摘要:
Techniques for fabricating a device include forming a fabrication layout, such as a mask layout, for a physical design layer, such as a design for an integrated circuit, and identifying evaluation points on an edge of a polygon corresponding to the design layer for correcting proximity effects. Techniques include selecting from among all edges of all polygons in a proposed layout a subset of edges for which proximity corrections are desirable. The subset of edges includes less than all the edges. Evaluation points are established only for the subset of edges. Corrections are determined for at least portions of the subset of edges based on an analysis performed at the evaluation points. Other techniques include establishing a projection point on a first edge corresponding to the design layout based on whether a vertex of a second edge is within a halo distance. An evaluation point is determined for the first edge based on the projection point and characteristics of the first edge. It is then determined how to correct at least a portion of the edge for proximity effects based on an analysis at the evaluation point.
摘要:
A computer-implemented method for matching parameters of outputs generated by a first and second process. The first process generates a first output having a characteristic measurable by a first parameter, and the second process generates a second output having the characteristic measurable by a second parameter. A computer having a processing unit and memory is provided. The computer generates a first model of the first parameter for the first process and a second model of the second parameter for the second process. The computer generates a first simulated output of the first process using the first model. A correction, which is a function of the second model and which compensates for the effect of the second process on the second parameter, is applied to the first simulated output to obtain a corrected output. The second process is applied to the corrected output to generate with the computer thereby a third output matching the first parameter of the first output.
摘要:
Mask and integrated circuit fabrication approaches are described to facilitate use of so called “full phase” masks. This facilitates use of masks where substantially all of a layout is defined using phase shifting. More specifically, exposure settings including relative dosing between the phase shift mask and the trim masks are described. Additionally, single reticle approaches for accommodating both masks are considered. In one embodiment, the phase shifting mask and the trim mask are exposed using the same exposure conditions, except for relative dosing. In another embodiment, the relative dosing between the phase and trim patterns is 1.0:r, 2.0
摘要:
Techniques are provided for extending the use of phase shift techniques to implementation of masks used for complex layouts in the layers of integrated circuits, beyond selected critical dimension features such as transistor gates to which such structures have been limited in the past. The method includes identifying features for which phase shifting can be applied, automatically mapping the phase shifting regions for implementation of such features, resolving phase conflicts which might occur according to a given design rule, and application of sub-resolution assist features within phase shift regions and optical proximity correction features to phase shift regions. In one approach, phase shift regions are laid out so that they extend around corners in a feature, and in one or more identified corners having greater process latitude, the phase shift regions are divided and assigned opposite phases in the corner. In another approach, phase shift regions are laid out so that they do not extend through the corners, and then phase shift regions are merged in all but the identified corners. Both opaque field phase shift masks and complementary binary masks defining interconnect structures and other types of structures that are not defined using phase shifting, necessary for completion of the layout of the layer are produced.