Abstract:
A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module. An artificial magnetic conductor surface is positioned adjacent the backside of each NFC coupler to reflect back side electromagnetic energy with a phase shift of approximately zero degrees.
Abstract:
A system on a package (SOP) can include a galvanic isolator. The galvanic isolator can include an input stage configured to transmit an input RF signal in response to receiving an input modulated signal. The galvanic isolator can also include a resonant coupler electrically isolated from the input stage by a dielectric. The resonant coupler can be configured to filter the input RF signal and transmit an output RF signal in response to the input RF signal. The galvanic isolator can further include an output stage electrically isolated from the resonant coupler by the dielectric. The output stage can be configured to provide an output modulated signal in response to receiving the output RF signal.
Abstract:
Example embodiments of the systems and methods of polyphase generation involve quadrature generation in high frequency digital transceivers. An oscillation signal is received and converted to complex variables with lead and lag phase rotation while performing compensation and calibration due to non-idealities of the in-phase and quadrature phase component parts. In addition to orthagonalizating, the quadrature generator also provides signal amplification and filtering. The quadrature phase generation scheme may be extended to odd harmonics of the fundamental frequency at the input.
Abstract:
Isolation circuits for digital communications and methods to provide isolation for digital communications are disclosed. An example isolation circuit includes an isolation barrier, a burst encoder in a first circuit, and an edge pattern detector in a second circuit. The example isolation barrier electrically isolates the first circuit from the second circuit. The example burst encoder generates a first pattern in response to receiving a rising edge on an input signal and generates a second pattern in response to receiving a falling edge on the input signal. The example edge pattern detector detects the first pattern or the second pattern received from the burst encoder via the isolation barrier, sets an output signal at a first signal level in response to detecting the first pattern, and sets the output signal at a second signal level in response to detecting the second pattern.
Abstract:
Data transfer devices and methods for transferring data between first and second circuits are disclosed. A data transfer device includes a first circuit having a plurality of data channels, wherein at least one of the data channels is an active data channel. A serializer has a plurality of inputs and an output, wherein the inputs are coupled to the plurality of data channels. The serializer is for coupling only one active channel at a time to the output. An isolation barrier is coupled to the output of the serializer, the isolation attenuates transients and passes the fundamental frequency. A second circuit includes a deserializer having an input and at least one output, the input is coupled to the isolation barrier, the at least one output is at least one active data channel.
Abstract:
An on-chip directional coupler includes a first linear conductive trace, a second linear conductive trace, and a conductive loop. The first linear conductive trace including an end and a coupled port. The second linear conductive trace is spaced apart from and parallel to the first linear conductive trace. The second linear conductive trace includes an end and an isolated port. The conductive loop includes a first end conductively coupled to the end of the first linear conductive trace, and a second end conductively coupled to the end of the second linear conductive trace.
Abstract:
Described embodiments include a circuit having a quadrature phase generator circuit having differential generator inputs, in-phase differential generator outputs and quadrature-phase differential generator outputs. A first frequency multiplier circuit has first differential multiplier inputs and a first multiplier output, wherein the first differential multiplier inputs are coupled to the in-phase differential generator outputs. A second frequency multiplier circuit has second differential multiplier inputs and a second multiplier output. The second multiplier differential inputs are coupled to the quadrature-phase differential generator outputs. A transformer includes a primary inductor and a secondary inductor, wherein the primary inductor is coupled between the first and second multiplier outputs, and the second inductor is coupled between an output voltage terminal and a ground terminal.
Abstract:
In described examples, a multi-terminal switch includes first and second switches, and first, second, and third inductors. The first switch and first inductor are coupled between first terminals, the second switch and second inductor are coupled between second terminals, and the third inductor is coupled between third terminals. In a first mode, the first switch is opened and the second switch is closed. Opening the first switch and closing the second switch enables a first connection between the first terminals and the third terminals via a first magnetic coupling between the first and third inductors. In a second mode, the first switch is closed and the second switch is opened. Closing the first switch and opening the second switch enables a second connection between the second terminals and the third terminals via a second magnetic coupling between the second and third inductors.
Abstract:
An oscillator circuit includes a bulk acoustic wave resonator, a differential active inductor circuit, and a gain circuit. The differential active inductor circuit is configured to bias the bulk acoustic wave resonator. The differential active inductor circuit is coupled between the bulk acoustic wave resonator and a power supply terminal. The gain circuit is coupled to the bulk acoustic wave resonator.
Abstract:
A frequency multiplier includes an input section having inputs to receive an input signal having an input frequency, a mixer section, and an output section magnetically coupled to the input section and generating an output signal in response to the input signal. The mixer section may be coupled to the input section by a common mode node forming a path for a common mode current to flow to the mixer section and be magnetically coupled to the common mode node. The input section may generate a signal current, and the mixer section may be magnetically coupled to the input section and be directly capacitively coupled to the input section through a capacitor in a signal current path. The mixer section may have differential inputs capacitively coupled to the input section and also be coupled to the input section through a current path. A current helper section may be coupled to the current path.