Abstract:
Provided are assemblies having composite structures interlocked with shape memory alloy structures and methods of fabricating such assemblies. Interlocking may involve inserting an interlocking protrusion of a shape memory alloy structure into an interlocking opening of a composite structure and heating at least this protrusion of the shape memory alloy structure to activate the alloy and change the shape of the protrusion. This shape change engages the protrusion in the opening such that the protrusion cannot be removed from the opening. The shape memory alloy structure may be specifically trained prior to forming an assembly using a combination of thermal cycling and deformation to achieve specific pre-activation and post-activation shapes. The pre-activation shape allows inserting the interlocking protrusion into the opening, while the post-activation shape engages the interlocking protrusion within the opening. As such, activation of the shape memory alloy interlocks the two structures.
Abstract:
Methods and apparatuses are disclosed relating to multilayer 3D textile composite materials containing self-healing resins for use as protective structures on stationary objects, and moving objects including, without limitation, vehicles including spacecraft and aircraft.
Abstract:
A method of bonding materials may comprise defining a bond interface between two materials in a cure zone on a surface of an object, and non-conductively heating the bond interface without directly heating the surface outside of the cure zone. Non-conductively heating the bond interface may involve applying microwave radiation to the bond interface.
Abstract:
A system for manufacturing a composite tubular structure. The system includes an outer tube configured to remain rigid up to at least a first threshold pressure. The system includes an inner tube internal to the outer tube and substantially coaxial with the outer tube. The inner tube has a first outer surface and a first inner surface. The inner tube is configured to remain rigid up to a second threshold pressure that is less than the threshold first pressure. The system includes a composite tubular layup laid on the first outer surface of the inner tube. The system includes an assembly of a plurality of separate segments disposed inside the inner tube, each segment adjacent to two other segments, to form a segmented inner cylinder having a second outer surface of a cylindrical shape and an inner channel of a first conical shape.
Abstract:
A system for manufacturing a composite tubular structure. The system includes an outer tube configured to remain rigid up to at least a first threshold pressure. The system includes an inner tube internal to the outer tube and substantially coaxial with the outer tube. The inner tube has a first outer surface and a first inner surface. The inner tube is configured to remain rigid up to a second threshold pressure that is less than the threshold first pressure. The system includes a composite tubular layup laid on the first outer surface of the inner tube. The system includes an assembly of a plurality of separate segments disposed inside the inner tube, each segment adjacent to two other segments, to form a segmented inner cylinder having a second outer surface of a cylindrical shape and an inner channel of a first conical shape.