FinFET Structures and Methods of Forming the Same

    公开(公告)号:US20220359730A1

    公开(公告)日:2022-11-10

    申请号:US17815443

    申请日:2022-07-27

    Abstract: A method includes forming a first fin and a second fin over a substrate, depositing an isolation material surrounding the first and second fins, forming a gate structure along sidewalls and over upper surfaces of the first and second fins, recessing the first and second fins outside of the gate structure to form a first recess in the first fin and a second recess in the second fin, epitaxially growing a first source/drain material protruding from the first and second recesses, and epitaxially growing a second source/drain material on the first source/drain material, wherein the second source/drain material grows at a slower rate on outermost surfaces of opposite ends of the first source/drain material than on surfaces of the first source/drain material between the opposite ends of the first source/drain material, and wherein the second source/drain material has a higher doping concentration than the first source/drain material.

    SOURCE/DRAIN STRUCTURE FOR SEMICONDUCTOR DEVICE

    公开(公告)号:US20220028991A1

    公开(公告)日:2022-01-27

    申请号:US16935890

    申请日:2020-07-22

    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a gate structure over the substrate, and a source/drain (S/D) region adjacent to the gate structure. The S/D region can include first and second side surfaces separated from each other. The S/D region can further include top and bottom surfaces between the first and second side surfaces. A first separation between the top and bottom surfaces can be greater than a second separation between the first and second side surfaces.

    Method of forming source/drain epitaxial stacks

    公开(公告)号:US10680106B2

    公开(公告)日:2020-06-09

    申请号:US15997130

    申请日:2018-06-04

    Abstract: The present disclosure describes a method to form silicon germanium (SiGe) source/drain epitaxial stacks with a boron doping profile and a germanium concentration that can induce external stress to a fully strained SiGe channel. The method includes forming one or more gate structures over a fin, where the fin includes a fin height, a first sidewall, and a second sidewall opposite to the first sidewall. The method also includes forming a first spacer on the first sidewall of the fin and a second spacer on the second sidewall of the fin; etching the fin to reduce the fin height between the one or more gate structures; and etching the first spacer and the second spacer between the one or more gate structures so that the etched first spacer is shorter than the etched second spacer and the first and second etched spacers are shorter than the etched fin. The method further includes forming an epitaxial stack on the etched fin between the one or more gate structures.

Patent Agency Ranking