摘要:
A method for analyzing a layout for a semiconductor integrated circuit, which includes a plurality of physical devices, to generate physical parameter distribution enabling accurate recognition of changes in transistor characteristics caused by systematic variations. The method includes holding systematic variation tables for physical parameters dependent on the layout of the semiconductor integrated circuit among physical parameters related to characteristics of the semiconductor integrated circuit, analyzing a design layout pattern of the semiconductor integrated circuit and selecting tables corresponding to the plurality of physical devices, and generating a physical parameter distribution based on the selected tables.
摘要:
A backup memory, a DMA (direct memory access) controller, and a WDT (watch dog timer) are provided in addition to a CPU (central processing unit), a RAM (random access memory), and a peripheral circuit. The DMA controller exercises control so that respective data of the CPU, RAM and peripheral circuit is saved in the backup memory each time the CPU, being under normal operation, supplies a counter reset signal to the WDT, and so that the data that has been saved in the backup memory is restored to the CPU, the RAM and the peripheral circuit, respectively, if the WDT has detected a program runaway and outputted a time-over signal. Therefore, even in a case where a program runaway has occurred in the CPU, normal operation is permitted to be resumed from midway in the program.
摘要:
An LSI design method according to the present invention is to estimate a timing uncertainty in an early stage of design for each item of which an influence on timing is uncertain among respective items requiring consideration relating to establishment of timing; and define a timing margin in each design stage by using the timing uncertainty estimation result depending on whether or not an influence of the each item on timing has been determined, followed by proceeding with the design in the respective design stages accordingly. As such, according to the present invention, a timing uncertainty is estimated in an early stage of LSI design, followed by proceeding with the design by using the timing uncertainty as required.
摘要:
OCV coefficients in a path being an analysis target according to the number of gate stages are calculated in a coefficient arithmetically operating unit by canceling off a variation in delay in each gate in accordance with the number of gate stages in the target path, and timing analysis of the target path is performed in a timing analysis unit by using the OCV coefficient with the number of gate stages being considered, whereby a variation degree in the entire path is reduced in accordance with the number of gate stages in the target path, thus making it possible to carry out accurate timing analysis in consideration of the variation in a chip of a semiconductor integrated circuit.
摘要:
In a method of and an apparatus for designing a semiconductor integrated circuit device, which are capable of causing each waveform rounding to fall within a predetermined limit value without delay calculations at an early stage of the development of the semiconductor integrated circuit device, a wiring path resistance Rpath from an output terminal of a target circuit cell to a next-stage circuit cell and an allowable longest wiring resistance RtL drivable by the target circuit cell are compared. When Rpath is less than or equal to RtL (S4: YES), the sum Rtotal of resistances of wiring loads in a net and RtL are compared. If Rtotal is less than or equal to RtL (S5: YES), then the next-stage circuit cell is judged to be drivable within a predetermined waveform rounding limit value. When Rtotal is greater than RtL (S5: NO), an effective resistance Rw of each wiring load and an allowable longest wiring effective resistance RwL are compared. When Rw is less than or equal to RwL (S6: YES), the waveform rounding at the next-stage circuit cell is judged to fall within a predetermined limit value.
摘要:
A container 1 has a support member 3 which ascends and descends freely and is provided at back of a container body 2, a top connecting member 11 which is fixed at front of the container body 2 and can couple and decouple with a carrier 45, a bottom connecting member 16 which is provided at the front of the container body 2 so as to be able to move and which couples and decouples with the carrier 45, and transmitting members 21, 40 which transmit the movement of the bottom connecting member 16 to the support member 3 and raise and lower the support member 3. When this container 1 is loaded on the carrier 45, it is possible to synchronize the front and back of the container body 2 so that the container 1 remains level by raising the front of the container 1 by lifting the top connecting member 11 at the front of the container body 2 by a member 61 of the carrier 45, and holding the bottom connecting member 16 at the front of the container 1 fixed with respect to the ground, transferring the motion of the bottom connecting member 16 relative to the container body 2 to the support member 3 at the back of the container 1 by the transmitting members 21, 40, and extending the support member 3 at the back of the container 1 down to raise the back of the container 1.
摘要:
A method of refining tungsten hexafluoride containing molybdenum hexafluoride as an impurity includes the step of contacting the tungsten hexafluoride with at least one metal selected from the group consisting of Mo, W, Cu, Ni, Fe, Co, Zn, Ti, Al, Ca and Mg at a temperature ranging from 100.degree. to 500.degree. C. Molybdenum hexafluoride is efficiently removed from the tungsten hexafluoride by the method.
摘要:
A process for producing silicon which comprises: bringing molten silicon containing an impurity into contact with molten salt in a vessel to react the impurity contained in the molten silicon with the molten salt; removing the impurity from the system.
摘要:
When a material shape model is separated in shear through processing, a shape model of a material in a state of being suspended remains in mid-air, and thus, interference is detected excessively. In order to prevent the excessive detection of interference, in a processing simulation method for generating a shape model of a processed material from a shape model of a material and a shape model of a tool processing area which is defined from a shape model of the tool and a movement path of the tool, the shape model of the material being separated into a plurality of shapes by processing is detected; a material shape to be cut-off is extracted from the separated material shapes; and the extracted material shape to be cut-off is excluded from subject of simulation.
摘要:
Even in an uncuttable state in which an actual rotational direction of a main spindle is not matched with an actually cuttable main spindle rotational direction of a tool, an interference check between a workpiece and the tool is performed. Accordingly, the cuttable main spindle rotational direction of the selected tool or the uncuttable main spindle rotational direction is compared with each main spindle rotational direction of a working machine during execution of a simulation, and it is determined whether an interference check between the tool blade edge and the workpiece is necessary on the basis of the comparison result. When it is determined that the interference check is not necessary in the step above, the interference check between the tool blade edge and the workpiece is not performed. When it is determined that the interference check is necessary, the interference check between the tool blade edge and the workpiece is performed. When the interference therebetween is present, abnormality is detected.