摘要:
An ethylene-based polymer characterized as having a density from about 0.9 to about 0.94 grams per cubic centimeter, a molecular weight distribution (Mw/Mn) from about 4 to about 10, a melt index (I2) from about 0.05 to about 2 grams per 10 minutes, a gpcBR value greater than 0.05 as determined by a gpcBR Branching Index and a Y value greater than 0.4 is disclosed. This ethylene-based polymer is especially useful for blending with other polymers such as LLDPE. When converting the blends into film, especially shrink film, the film shows good optics, good shrink tension, high stiffness, high tensile modulus, and tensile strength. When this resin is blended at with a LLDPE on a blown film line, improvements are seen in haze, gloss, clarity, and MD and CD tear as compared to a comparative LDPE.
摘要:
An ethylene-based polymer composition has been discovered and is characterized by a Comonomer Distribution Constant greater than about 45. The new ethylene-based polymer compositions and blends thereof with one or more polymers, such as LDPE, are useful for making many articles, especially including films.
摘要:
The invention provides an ethylene-based polymer comprising the following properties: A) a MWDconv from 7 to 10; and B) a “normalized LSF” greater than, or equal to, 9.5.
摘要:
An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm≧(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
摘要:
The instant invention provides an ethylene/alpha-olefin interpolymer suitable for use in shrinkage film applications, and articles made therefrom. The ethylene/alpha-olefin interpolymer according to the present invention has a CDBI of less than 60%, and comprises at least two fractions in crossfractionation of the ethylene/alpha-olefin interpolymer, eluting from 85° C. to 90° C. and from 90° C. to 95° C., comprising a weight fraction ratio of >0.68 and a molecular weight homogeneity index of greater than 0.65; wherein the weight fraction ratio is the ratio of the weight of polymer in each fraction divided by the weight of polymer eluting between 95° C. and 100° C. and the molecular weight homogeneity index is the ratio of the weight average molecular weight of the polymer in the fraction divided by the weight average molecular weight of the polymer eluting between 95° C. and 100° C., and wherein the ethylene/alpha-olefin interpolymer has a density in the range of 0.920 to 0.940 g/cm3.
摘要:
A polymer comprises units derived from ethylene and poly(alkoxide) the polymer having at least 0.15 units of amyl groups per 1000 carbon atoms as determined by 13C Nuclear Magnetic Resonance (NMR).
摘要:
The present invention relates to an ethylene/α-olefin interpolymer product comprising at least one α-olefin interpolymerized with ethylene and, characterized in at least one aspect, as having improved properties when utilized in a hot melt adhesive formulation. The invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein the at least two catalyst systems have (a) different comonomer incorporation capabilities or reactivities and/or (b) different termination kinetics, both when measured under the same polymerization conditions. The interpolymer products are useful, for example, in applications such as hot melt adhesives, and also for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
摘要:
A process is taught, comprising polymerizing ethylene in the presence of a catalyst to form a crystalline ethylene-based polymer having a crystallinity of at least 50% as determined by DSC Crystallinity in a first reactor or a first part of a multi-part reactor and reacting the crystalline ethylene-based polymer with additional ethylene in the presence of a free-radical initiator to form an ethylenic polymer in at least one other reactor or a later part of a multi-part reactor.
摘要:
An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm≧(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
摘要:
Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.