摘要:
A nonvolatile semiconductor memory device includes: a stacked body in which insulating films and electrode films are alternately stacked; selection gate electrodes provided on the stacked body; bit lines provided on the selection gate electrodes; semiconductor pillars; connective members separated from one another; and a charge storage layer provided between the electrode film and the semiconductor pillar. One of the connective members is connected between a lower part of one of the semiconductor pillars and a lower part of another of the semiconductor pillars. The one of the semiconductor pillars passes through one of the selection gate electrodes and is connected to one of the bit lines, and the another of the semiconductor pillars passes through another of the selection gate electrodes and is connected to another of the bit lines.
摘要:
According to one embodiment, a semiconductor memory device includes a semiconductor substrate, memory cell array portion, single-crystal semiconductor layer, and circuit portion. The memory cell array portion is formed on the semiconductor substrate, and includes memory cells. The semiconductor layer is formed on the memory cell array portion, and connected to the semiconductor substrate by being formed in a hole extending through the memory cell array portion.The circuit portion is formed on the semiconductor layer. The Ge concentration in the lower portion of the semiconductor layer is higher than that in the upper portion of the semiconductor layer.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes first and second stacked structural bodies, first and second semiconductor pillars, a memory unit connection portion, a selection unit stacked structural body, first and second selection unit semiconductor pillars, a selection unit connection portion, and first to fifth interconnections. The semiconductor pillars pierce the stacked structural bodies. The first and second interconnections are connected to the first and second semiconductor pillars, respectively. The memory unit connection portion connects the first and second semiconductor pillars. The selection unit semiconductor pillars pierce the selection unit stacked structural body. The third and fourth interconnections are connected to the first and second selection unit semiconductor pillars, respectively. The selection unit connection portion connects the first and second selection unit semiconductor pillars. The fifth interconnection is connected to the third interconnection on a side opposite to the selection unit stacked structural body.
摘要:
According to one embodiment, a semiconductor memory device includes a base, a stacked body, a memory film, a channel body, an interconnection, and a contact plug. The base includes a substrate and a peripheral circuit formed on a surface of the substrate. The stacked body includes a plurality of conductive layers and a plurality of insulating layers alternately stacked above the base. The memory film is provided on an inner wall of a memory hole punched through the stacked body to reach a lowermost layer of the conductive layers. The memory film includes a charge storage film. The interconnection is provided below the stacked body. The interconnection electrically connects the lowermost layer of the conductive layers in an interconnection region laid out on an outside of a memory cell array region and the peripheral circuit. The contact plug pierces the stacked body in the interconnection region to reach the lowermost layer of the conductive layers in the interconnection region.
摘要:
A stacked body is formed on a silicon substrate by stacking a plurality of insulating films and a plurality of electrode films alternately and through-holes are formed to extend in the stacking direction. Next, gaps are formed between the electrode films using etching the insulating films via the through-holes. Charge storage layers are formed along side faces of the through-holes and inner faces of the gaps, and silicon pillars are filled into the through-holes. Thereby, a nonvolatile semiconductor memory device is manufactured.
摘要:
A non-volatile semiconductor storage device includes a first layer and a second layer. The first layer includes: a plurality of first conductive layers extending in parallel to a substrate and laminated in a direction perpendicular to the substrate; a first insulation layer formed on an upper layer of the plurality of first conductive layers; a first semiconductor layer formed to penetrate the plurality of first conductive layers; and a charge accumulation layer formed between the first conductive layers and the first semiconductor layer. Respective ends of the first conductive layers are formed in a stepwise manner in relation to each other in a first direction. The second layer includes: a plurality of second conductive layers extending in parallel to the substrate and laminated in a direction perpendicular to the substrate, the second conductive layers being formed in the same layer as the plurality of first conductive layers; and a second insulation layer formed on an upper layer of the plurality of second conductive layers. Respective ends of the second conductive layers are formed to align along a straight line extending in a direction substantially perpendicular to the substrate at a predetermined area.
摘要:
A semiconductor device has a substrate, a source region formed on the surface portion of the substrate, a first insulating layer formed on the substrate, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, a body section connected with the source region, penetrating through the first insulating layer, the gate electrode and the second insulating layer, and containing a void, a gate insulating film surrounding the body section, and formed between the body section and the gate electrode, and a drain region connected with the body section.
摘要:
A semiconductor memory device includes: a semiconductor substrate; a stacked body with a plurality of conductive layers and a plurality of dielectric layers alternately stacked, the stacked body being provided on the semiconductor substrate; a semiconductor layer provided inside a hole formed through the stacked body, the semiconductor layer extending in stacking direction of the conductive layers and the dielectric layers; and a charge storage layer provided between the conductive layers and the semiconductor layer. The stacked body in a memory cell array region including a plurality of memory strings is divided into a plurality of blocks by slits with an interlayer dielectric film buried therein, the memory string including as many memory cells series-connected in the stacking direction as the conductive layers, the memory cell including the conductive layer, the semiconductor layer, and the charge storage layer provided between the conductive layer and the semiconductor layer, and each of the block is surrounded by the slits formed in a closed pattern.
摘要:
A memory string has a semiconductor layer with a joining portion that is formed to join a plurality of columnar portions extending in a vertical direction with respect to a substrate and lower ends of the plurality of columnar portions. First conductive layers are formed in a laminated fashion to surround side surfaces of the columnar portions and an electric charge storage layer, and function as control electrodes of memory cells. A second conductive layer is formed around the plurality of columnar portions via a gate insulation film, and functions as control electrodes of selection transistors. Bit lines are formed to be connected to the plurality of columnar portions, respectively, with a second direction orthogonal to a first direction taken as a longitudinal direction.
摘要:
A non-volatile semiconductor storage device has a plurality of memory strings with a plurality of electrically rewritable memory cells connected in series. Each of the memory strings includes: a memory columnar semiconductor extending in a direction perpendicular to a substrate; a tunnel insulation layer contacting the memory columnar semiconductor; a charge accumulation layer contacting the tunnel insulation layer and accumulating charges; a block insulation layer contacting the charge accumulation layer; and a plurality of memory conductive layers contacting the block insulation layer. The lower portion of the charge accumulation layer is covered by the tunnel insulation layer and the block insulation layer.